The mechanical properties of tissues play a critical role in their normal and pathophysiological functions such as tissue development, aging, injury, and disease. Understanding tissue mechanics is important not only for designing realistic biomimetic materials for tissue engineering and drug testing but also for developing novel diagnostic techniques and medical interventions. Tissues are heterogeneous materials consisting of cells confined within extracellular matrices (ECMs), both of which derive their structural integrity, at least in part, from networks of biopolymers. However, the rheology of purified reconstituted biopolymer networks fails to explain many key aspects of tissue mechanics. Notably, purified networks typically soften under applied compression, whereas many soft tissues like liver, fat, and brain instead stiffen when compressed. While continuum models can readily capture this compression-stiffening behavior, the underlying mechanism is not fully understood. In this perspective paper, we discuss several recently proposed microscopic mechanisms that may explain compression stiffening of soft tissues. These mechanisms include (I) interactions between the ECM and volume-preserving inclusions that promote extension-dominated stiffening of fibrous ECMs when subject to uniform compression, (II) ECM interactions with rigid inclusions under non-uniform compression, (III) other internal physical constraints that cause compression stiffening of cells and ECMs, and (IV) propagation of compressive forces through jammed, compression-stiffening cells. We further identify a few of the many open problems in understanding the structure–function relationship of soft-tissue mechanics.