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Shear-induced phase transition and critical exponents in three-dimensional fiber networks
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When subject to applied strain, fiber networks exhibit nonlinear elastic stiffening. Recent theory and experi-
ments have shown that this phenomenon is controlled by an underlying mechanical phase transition that is critical
in nature. Growing simulation evidence points to non-mean-field behavior for this transition and a hyperscaling
relation has been proposed to relate the corresponding critical exponents. Here, we report simulations on two
distinct network structures in three dimensions. By performing a finite-size scaling analysis, we test hyperscaling
and identify various critical exponents. From the apparent validity of hyperscaling, as well as the non-mean-field
exponents we observe, our results suggest that the upper critical dimension for the strain-controlled phase
transition is above three, in contrast to the jamming transition that represents another athermal, mechanical
phase transition.
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Networks of interconnected fibers are common in both
natural and synthetic contexts, with examples ranging from
biopolymer networks to paper and carbon nanotube materials
[1–3]. In biology, fibrous networks are primarily responsible
for the mechanical stability of cells and tissues. These net-
works include both intracellular structures of actin and micro-
tubules as well as extracellular matrices such as collagen and
fibrin [4,5]. In recent decades, high-precision rheology exper-
iments on purified, reconstituted biopolymer networks have
revealed unusual elastic properties including negative normal
stresses [6] and nonlinear strain stiffening [7,8]. It has been
shown that the mechanics of such networks depend not only
on the elasticity of individual fibers but also strongly on net-
work connectivity. To understand the mechanical behavior of
stiff biopolymer networks, coarse-grained athermal fiber mod-
els with controlled connectivity z have been used in the liter-
ature [9–15]. Strikingly, these simple models can accurately
explain the strain stiffening observed in collagen experiments
[16,17]. Both experiments and theory point to the importance
of a mechanical phase transition as a function of strain.

Here, we study the critical aspects of this phase transition
in three-dimensional (3D) fiber networks under an applied
simple shear. Most prior systematic studies have been lim-
ited to 2D, due to the significant computational challenges
imposed by the nonlinear elasticity and the need for large
systems because of the diverging correlation length. Although
models to date point to qualitatively similar behavior in 2D
and 3D [16,18–20], important questions remain, e.g., concern-
ing the possibility of non-mean-field behavior that has been
observed in 2D. We show that fiber networks exhibit non-
mean-field behavior in 3D and are consistent with a recently
identified hyperscaling scaling relation [21], suggesting that
the upper critical dimension for fiber networks is greater than
three, in contrast to the jamming transition [22].

Model. We consider two varieties of network structures:
packing-derived (PD) and random geometric graph (RGG)
networks at a physiologically relevant connectivity z � 3.5
[17,23,24]. Importantly, such connectivity lies below the
3D Maxwell isostatic threshold zc = 6 [25,26], at which
central-force networks are marginally stable to linear order,
as sketched in Fig. 1. This connectivity-controlled rigidity
transition has been extensively studied in spring networks
[13,27–30], and is analogous to jamming in granular materials
[31–33], although the critical exponents differ.

For PD networks, we use a jammed packing of spheres to
create an off-lattice network. We randomly distribute a 50:50
bidisperse mixture of spherical particles with a size ratio of
1.4 in a periodic cube of size W , with N = W 3 spheres in
total. The particles interact via a repulsive harmonic potential
[22,34,35]. We start by swelling the particles until the pressure
becomes finite, which yields a network with z � 2d = 6. We
then randomly remove bonds to obtain the desired connectiv-
ity z < 6. For RGG networks, we randomly distribute nodes
in a cube with a side length W before connecting pairs of
nodes according to a distance-dependent probability distribu-
tion [36] until the desired connectivity is reached. More details
on the RGG model are provided in the Supplemental Material
[37].

The network elastic energy H consists of stretching and
bending contributions

H = μ

2

∑
i j

(�i j − �i j,0)2

�i j,0
+ κb

2

∑
i jk

(θi jk − θi jk,0)2

�i jk,0
, (1)

where μ is the stretching modulus of the individual bonds,
�i j,0 is the initial bond length prior to any deformation, �i j is
the current bond length, κb is the bending stiffness of fibers,
θi jk,0 is the initial angle between two adjacent bonds i j and
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FIG. 1. Schematic phase diagram for central-force networks.
Networks with an average connectivity below the percolation thresh-
old zp are disconnected, hence there is no mechanical response at any
strain value. Networks with z > zc, however, are stable at zero strain.
In the intermediate regime, with zp < z < zc, networks are floppy at
zero strain but can be rigidified by applying strain beyond a finite
threshold that depends on the network’s connectivity and geometry.
The red arrow indicates the nonlinear transition in subisostatic net-
works that is the subject of this study.

jk prior to any deformation, θi jk is the current angle between
adjacent bonds i j and jk, and �i jk,0 = �i j,0+� jk,0

2 is the initial
average bond length of bonds i j and jk. We set μ = 1 and
vary the dimensionless bending stiffness κ = κb/μ�2

c , where
�c is the average initial bond length. All lengths in the system
are in units of �c. We also note that there are no excluded
volume interactions between fibers or the network nodes in
our models.

To study the mechanical transition, we apply a simple shear
deformation γ in a stepwise manner in the x-z plane using
Lees-Edwards boundary conditions [38]. Although we focus
on shear, we note that uniaxial and bulk deformations can also
rigidify such networks [39–43]. Using the FIRE algorithm
[44], we minimize the elastic energy defined in Eq. (1) at each
strain step and calculate the stress tensor as [21]

σαβ = 1

2V

∑
i j

fi j,αri j,β , (2)

where V is the volume of the system, fi j,α is the α component
of the force exerted on node i by node j, and ri j,β is the β

component of the displacement vector connecting nodes i and
j. We then compute the differential shear modulus as K =
∂σxz/∂γ , which is an energy per volume and is given here in
units of μ/�d−1

c . Unless otherwise stated, quantities reported
throughout this Letter correspond to averages over 40 random
realizations.

Scaling relation. When we apply sufficiently large shear
strain to a subisostatic network with central-force interactions
(red arrow in Fig. 1), the system undergoes a phase transi-
tion from a floppy to a rigid state. At the critical strain γc,
which is a function of network connectivity z [13,16], the
differential shear modulus K discontinuously jumps from 0
to a finite value Kc [15,43,45]. The excess shear modulus

K − Kc exhibits a power-law scaling behavior near γc, with
K − Kc ∼ |
γ | f , where 
γ = γ − γc. Including weak bend-
ing interactions between adjacent bonds stabilizes the network
in the subcritical regime γ < γc, such that the floppy-to-
rigid transition becomes a transition between bending- and
stretching-dominated states. The following Widom-like [46]
scaling function captures the mechanics of networks with
finite bending stiffness [16],

K ≈ |
γ | f G±

(
κ

|
γ |φ
)

, (3)

in which the positive and negative branches of the scaling
function G± correspond to 
γ > 0 and 
γ < 0, respectively.
For γ < γc and κ/|
γ |φ � 1, the shear modulus scales as
K ∼ κ|
γ |−λ with λ = φ − f . We note that the continuity of
K as a function of γ requires that K ∼ κ f /φ when κ/|
γ |φ is
large.

To relate the scaling exponents near the critical strain γc,
we follow the approach of Kadanoff [47] for the elastic energy
per node h as a function of the small parameters t = γ − γc

and κ [21]. Rescaling the system by a factor L results in a
renormalized energy h(t ′, κ ′) = Ld h(t, κ ), in which t ′ and κ ′
are the renormalized variables after transformation and d is
dimensionality. We assume that t ′ = tLx and κ ′ = κLy near
the critical point, with positive x and y. We can therefore write
the elastic energy per node as [21]

h(t, κ ) = L−d h(tLx, κLy). (4)

We find the differential shear modulus K ∼
L−d+2xh2,0(tLx, κLy) from the second derivative with respect
to γ or t , in a way analogous to the heat capacity in a thermal
phase transition, in which case differentiation is with respect
to the temperature. Here, h2,0 represents the second partial
derivative of h with respect to the first argument. So far, the
rescaling factor L is simply a mathematical parameter that
has not been specified. Thus, physical quantities such as K
cannot depend on L, from which the form of Eq. (3) follows
[48]. By choosing L = |t |−1/x, we find that f = d/x − 2 for
γ > γc. We also identify the correlation length ξ ∼ L ∼ |t |−ν

and the scaling relations [21,48]

f = dν − 2 and φ = yν. (5)

The first of these is a hyperscaling relation that is of particular
importance for the appearance of the dimensionality d of the
system. This can can only be satisfied for mean-field systems
at a particular d = du, which sets the upper critical dimension.
Only for dimensionalities below this are non-mean-field criti-
cal exponents possible.

Results. In order to find the critical exponent f , care must
be taken to account for finite-size effects. For a finite system,
only when the system size exceeds the correlation length ξ ,
i.e., W |t |ν � 1, will the thermodynamic properties approxi-
mate those of the thermodynamic limit. In the opposite limit
W |t |ν � 1, which occurs close to t = 0, correlations are lim-
ited and analytic behavior is expected. Thus, we determine the
critical exponents only for W � ξ . For small t > 0, we expect
the shear modulus to vary with system size W as [45]

K − Kc = W − f /νF (tW 1/ν ). (6)
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FIG. 2. (a) Finite-size analysis of K for the PD model at z =
3.3 with κ = 0. In the critical region, we obtain f = 0.79 ± 0.03.
(b) Similar finite-size scaling analysis for PD networks at a different
connectivity z = 4.0. We find an exponent of f = 0.86 ± 0.04 in
the critical regime. For both models, an apparent exponent of 1.0 is
observed in the finite-size-dominated region, consistent with analytic
behavior. The insets show the distribution of the exponent f .

Here, F (x) is a scaling function that is expected to increase
as ∼x f for large arguments, in order to obtain a well-defined
thermodynamic limit. Figure 2 shows the finite-size analysis
corresponding to this. Here, the sample-dependent critical
strain γc is found using the bisection method [43,45]. For
PD networks at z = 3.3 of size W = 40 at strains beyond the
regime dominated by finite-size effects (i.e., W � ξ ), we find
f = 0.79 ± 0.03, where the errors are standard deviations for
20 random realizations [37]. Upon increasing the connectivity
to z = 4.0, the resulting data are consistent with a slightly
larger f = 0.86 ± 0.04, which is obtained by averaging 20
samples of size W = 30 (see Fig. 2). The distributions of the
f exponent are shown as insets in Fig. 2. For the RGG model
at z = 3.3 we find f = 0.92 ± 0.02 using a system size of
W = 30 [37].

Similar to 2D models [45], we find that the shear modulus
discontinuity Kc decreases as the system size W increases
[37]. We note that as the network size increases, the regime

FIG. 3. (a) Differential shear modulus K for PD networks with
z = 3.3 and system size W = 30 at various bending stiffnesses κ as
shown in the legend. The inset shows the scaling behavior of K in the
subcritical region, where K ∼ κ|
γ |−λ with λ = φ − f . (b) Widom-
like scaling collapse of K for data in (a). Using the critical exponents
f and φ as explained in the text, we are able to collapse our data
based on Eq. (3). The inset shows the distribution of φ values.

over which f can be computed extends to a smaller |
γ |.
Here, a non-mean-field exponent of f < 1 is seen. In the
finite-size-dominated regime, however, the data are consistent
with f = 1, which can be explained by a leading first term
in the scaling function that becomes analytic when W � ξ ,
as previously seen in 2D fiber networks [45] and jammed
systems [49].

In Fig. 3(a), we plot the shear modulus versus strain for
packing-derived networks with finite κ and z = 3.3. From
the value of f above, we find the critical exponent φ in the
subcritical regime γ < γc from Eq. (3). Since K must be
proportional to κ in this regime, we expect K ∼ κ|
γ | f −φ

(see inset). The distribution of φ values with φ = 2.5 ± 0.1
is shown in the inset of Fig. 3(b) [37]. Considering Eq. (3),
we expect to find a scaling collapse of data in Fig. 3(a) for
various κ values to a single master curve. Figure 3(b) shows
this Widom-like scaling analysis. As we can see, using the
obtained values of f and φ, the data collapse in two branches,
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one for the data above γc, one for the data below γc. A similar
analysis for the RGG model with finite bending rigidity results
in φ = 2.8 ± 0.2 [37].

One of the most striking features of a critical phase transi-
tion is the divergence of fluctuations at the critical point, along
with the divergent correlation length ξ for these fluctuations.
Here, we measure the nonaffine displacement fluctuations of
network nodes under an infinitesimal shear strain, defined as

δ� = 〈||u − uaf ||2〉
�2

cδγ
2

, (7)

where u is the relaxed position of a network node after apply-
ing a small strain δγ , uaf is the affinely displaced position of
the node under a strain δγ from the previous relaxed position,
�c is the average initial bond length of the network, and the
angular brackets represent an average over all nodes. For
central-force networks, the fluctuations δ� diverge as the net-
work approaches the critical strain [19]. Since the nonaffine
displacements δu2 are found by minimizing the energy h(t, κ ),
we expect that h ∼ κδu2 ∼ κδγ 2δ� for small but finite κ .
Therefore, the fluctuations diverge as [21,50]

δ� ∼ |
γ |−λ, (8)

where the same λ = φ − f is observed for both γ < γc and
γ > γc.

To verify the scaling relation in Eq. (5), we calculate the
nonaffine fluctuations δ� for networks with κ = 0, as shown
for various system sizes in the Supplemental Material [37].
From Eq. (8), we expect the following scaling form to capture
the behavior of δ� in finite simulations [19],

δ� = W λ/νH(
γW 1/ν ), (9)

where H is a scaling function and λ = φ − f . Figure 4(a)
shows the finite-size scaling collapse of δ� data using the
previously obtained values of f and φ. The correlation length
exponent ν is computed from the scaling relation in Eq. (5).
Thus, this collapse demonstrates the validity of the hyper-
scaling relation f = dν − 2 in 3D systems. A similar scaling
collapse of fluctuations is shown in Fig. 4(b) for the RGG
model at z = 3.3. In order to further test this, we also sim-
ulated 3D PD networks at a different connectivity z = 4.0.
The figures for this are shown in the Supplemental Material
[37]. The scaling exponents f and φ are slightly larger than
the corresponding exponents for networks with z = 3.3. With
these new scaling exponents, we perform a similar finite-size
scaling analysis to Fig. 4 and find further evidence that the
hyperscaling relation holds. We note that although we deform
the networks in the x direction in the x-z plane for all the
above figures, other shear directions behave similarly since the
modulus behaves isotropically at the sizes studied here [37].

Conclusion. In this study, we measure the exponents asso-
ciated with the strain-driven rigidity transition for subisostatic
3D spring networks under applied simple shear. In agree-
ment with previous work on various network architectures
[16,21,51], we find non-mean-field exponents in the critical
regime by performing a systematic finite-size analysis in our
3D computational models. We also demonstrate evidence to

FIG. 4. (a) The finite-size analysis of the nonaffine fluctuations
for central-force PD networks at z = 3.3. As explained in the main
text, the scaling exponents f and φ are obtained using shear mod-
ulus data in the regimes 
γ > 0 and 
γ < 0, respectively. The
correlation length exponent ν is found using the scaling relation
f = dν − 2, which results in ν = 0.93. (b) Similar scaling collapse
of nonaffine fluctuations as in (a) for a central-force RGG model at
z = 3.3 using ν = ( f + 2)/d = 0.97.

support a recently proposed hyperscaling relation between
critical exponents [21]. Taken together, these results point to
an upper critical dimension du > 3 for the strain-controlled
phase transition that is above three, in stark contrast to the
jamming transition [22]. While our focus here has been on the
subisostatic transition that is most relevant to fiber networks
such as collagen, it is interesting to note that the isostatic crit-
ical point corresponding to z = 6 in 3D has also been shown
to exhibit non-mean-field exponents [29]. In future work, it
will be interesting to study hyperscaling for that transition as
well.
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