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Removal of disconnected and dangling clusters

Our reported coordination number z corresponds to the average network coordination after the removal
of dangling and disconnected bond clusters, which do not contribute to the network’s mechanical response
in the zero-frequency limit. Dangling clusters, shown in Fig. S1a, are defined as clusters of bonds connected
to the rest of the network by a single bond, or “bridge”. Bridges are identified as biconnected components
containing only a single bond and subsequently removed, resulting in disconnected clusters. Disconnected
clusters, shown in Fig. S1b, are then removed by identifying all connected components in the network and
removing all but the largest, corresponding to the bulk network. The Boost graph library [1] is utilized for
identification of connected and biconnected components.
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FIG. S1. (a) A dangling cluster (red) is defined as a cluster of bonds connected to the rest of the network by only one
bond. These are detected and removed by removing “bridges,” bonds which, if cut, disconnect the graph. Bridges are
identified as biconnected components containing only one bond. (b) A disconnected cluster (red) is a cluster of bonds
that is disconnected from the bulk network. We remove these by identifying all independent connected components
and retaining only the largest one.

System-size dependence of the critical strain distribution

We determine the critical shear strain γc for each network sample as the strain corresponding to the onset
of finite K in the κ = 0 limit. Consistent with prior work [2], we observe a decrease in the width of the γc

distribution with increasing system size, as shown in Fig. S2 for triangular networks.
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FIG. S2. The probability distribution of the critical strain γc decreases in width with increasing system size. These
data correspond to triangular networks with κ = 0 and z = 3.3, with at least 50 networks each for each system size.
The vertical black line denotes the average γc value for networks of size W = 200.

Strain-controlled criticality in packing-derived networks

Fig. S3 shows the measured shear stress vs. strain for both triangular and packing-derived networks. A
transition from a bending-dominated regime with σxy ∼ κ to a stretching-dominated regime with σxy ∼ µ

occurs at the critical strain γc, at which networks with κ = 0 develop nonzero stress. Figure S4 shows
the computed K vs. strain curves as well as the scaling of K with ∆γ for packing-derived networks, with
K ∼ |∆γ| f for γ > γc and K ∼ κ|∆γ| f−φ for γ < γc.
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FIG. S3. Shear stress σxy vs. shear strain γ for (a) triangular networks of size W = 140 and (b) packing-derived
networks of size W = 120, both diluted to z = 3.3, with varying reduced bending stiffness κ.
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FIG. S4. (a) Differential shear modulus K vs. shear strain for diluted packing-derived networks of size W = 120 and
connectivity z = 3.3, with varying reduced bending stiffness κ. The dashed line indicates the observed critical strain
γc for the ensemble. The inset shows the probability distribution for the measured γc values for 30 individual network
samples with κ = 0. (b) For γ > γc and with decreasing κ, K converges to the form K ∼ |γ−γc|

f , with f = 0.68±0.04.
These data are for the same networks as in (a). Inset: In the low-κ limit and below γc, K/κ converges to a power law
in |∆γ| with exponent f − φ ∼ −1.37.

Bending-rigidity dependence of the nonaffine fluctuations

For both triangular and packing-derived networks, finite bending rigidity suppresses nonaffine fluctua-
tions, as shown in Fig. S5a/c. At the critical strain, the nonaffine fluctuations grow with decreasing κ as
κ( f−φ)/φ (see Fig. S5b/d), as predicted by the scaling theory in the main text.
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FIG. S5. Differential nonaffinity dΓ vs. strain γ for (a) triangular networks of size W = 140 and (c) packing-derived
networks of size W = 120, both with z = 3.3 and varying bending rigidity κ. Colors here correspond to those in Figs.
1-3 of the main text. Plotting the values of dΓ at the critical strain as a function of κ, we observe reasonable agreement
at the inflection point with the predicted scaling dΓ(γc) ∼ κ( f−φ)/φ for both network models (panels b and d) using the
f and φ values determined independently based on K. Error bars represent standard error of the mean.

Finite-size scaling of the nonaffine fluctuations in networks with finite bending rigidity

We observe that the same finite size scaling of dΓ shown for networks with κ = 0 in Fig. 4 of the main
text is also satisfied for networks with small but finite κ, as shown in Fig. S6.
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FIG. S6. Plots of δΓ/W (φ− f )/ν vs. (γ − γc)W1/ν for (a) triangular networks and (b) packing-derived networks with
z = 3.3 and κ = 10−7 and varying system sizes demonstrate successful scaling collapse using the f , φ, and ν values
determined in the main text.

Finite-size scaling from previous work

We demonstrate that while the exponents of f = 0.75 ± 0.05 and ν = 2.0 ± 0.1 reported for phantom
triangular networks in Ref. [3] disagree with our scaling relation f = 2ν − 2, the data used to determine
these exponents can be replotted using the predicted ν value of ν = ( f + 2)/d = 1.38 and with an adjusted
value of γc(∞) to achieve a reasonable scaling collapse (see Fig. S7).
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FIG. S7. Data from Ref. [3], replotted with permission. (a) K vs. γ for phantom triangular networks with z = 3.2
and varying system size W. (b) The data from the previous panel plotted according to the finite size scaling relation
K ∼ W− f /νF±

(
|∆γ|W1/ν

)
, using f = 0.75, ν = ( f + 2)/d = 1.38, and γc(∞) = 0.129. We observe reasonable collapse,

comparable to that shown in Ref. [3]. (c) The scaling of |γc(∞) − γc(W)| vs. W using this modified value of γc(∞)
shows agreement with the predicted scaling of |γc(∞) − γc(W)| ∼ W−1/ν.
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Stress tensor calculation

For a system with point-like elements with positions ui, the stress tensor σ can be expressed as follows
[4, 5]:

σαβ = −
1
A

∑
i

fi,αui,β (S1)

in which the sum is taken over all nodes i, fi = −∂H/∂ui is the total force exerted on node i, and A is the
system’s area (or volume in 3D). Eq. S1 can equivalently be expressed as

σαβ =
1

2A

∑
i j

fi j,αui j,β (S2)

in which the sum is taken over all pairs of nodes i and j, ui j = u j − ui, and the force on node i due to its
interactions with node j is

fi j =
∂H

∂ui j
=
∂H

∂ui j

∂ui j

∂ui j
=
∂H

∂ui j

ui j

ui j
, (S3)

satisfying fi =
∑

j fi j and fi j = −f ji. WhileH may be composed of many-body potentials, the decomposition
of fi into (pairwise) central forces fi j shown in Eq. S3 is possible if H is continuously differentiable [6,
7]. Several prior studies have demonstrated computation of the stress tensor in systems with many-body
potentials using this central force decomposition [8–10].

Additionally, one can compute the components of the stress tensor using the principle of virtual work,
by manually taking derivatives ofH with respect to the various shear and normal strains:

σxz =
1
A
∂H

∂γ
(S3)

σxx =
1
A
∂H

∂εx
(S4)

σzz =
1
A
∂H

∂εz
(S5)

in which γ is simple shear strain and εx and εz are uniaxial strains along the x and z axes, respectively. We
have verified that these methods yield equivalent σ within numerical error.
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