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Abstract

Most biological materials are stabilized internally by disordered networks of long,

thin protein assemblies known as biopolymers. These networks occupy a negligible

fraction of the space inside cells and tissues, yet are largely responsible for their

extraordinary mechanical properties and exceptional resilience against unpredictable

physiological loads. An essential contributor to this resilience is their highly strain-

dependent stiffness; they easily deform to accommodate small strains, yet resist damage

by stiffening significantly in response to larger strains. Recent work has suggested that

the phenomenon of strain-induced stiffening in stiff or athermal biopolymer networks,

like the collagen-rich extracellular matrix, constitutes a phase transition between

distinct mechanical regimes, analogous to connectivity-controlled rigidity transitions

observed in networks and other amorphous materials. Simulations have shown that this

transition is heralded by classic signatures of continuous phase transitions, including

power law scaling of relevant observables and a diverging correlation length.

In this thesis, we develop theoretical and computational models to describe the

mechanics and dynamics of disordered elastic networks near the onset of rigidity. We

develop a real space renormalization-based scaling theory that establishes relationships

between the various critical exponents describing the scaling of the elastic moduli and

fluctuations in networks near both the strain-controlled and connectivity-controlled

rigidity transitions, which we validate using simulations of coarse-grained elastic

networks. We then describe the rheology of fluid-immersed networks near the strain-

induced stiffening transition and demonstrate that a coupling between diverging

strain fluctuations and time-dependent energy dissipation leads to emergent power

law rheology at a critical prestrain. Next, we explore the effects of criticality on a

phenomenon in biopolymer networks known as the nonlinear Poisson effect, which

describes their tendency to shrink dramatically and strongly align when stretched, a

behavior with potentially major consequences for matrix-embedded cells. We show

that this effect coincides with an analogous extension-controlled rigidity transition and

describe the influence of this transition on network rearrangement and the scaling of the

apparent Young’s modulus. We further propose a physical mechanism for the unusual

compression-driven stiffening effect observed in tissues. Considering a simplified model

tissue consisting of a disordered network with embedded stiff particles, we construct a

phase diagram describing a unique regime of compression-driven, tension-dominated

mechanical stability that arises in these systems before conventional jamming, which

we validate in simulations.

i



Preface

Portions of this thesis have been adapted from research articles written during my

dissertation period, all of which are listed below.

• Jordan L. Shivers, Jingchen Feng, Abhinav Sharma, and Fred C. MacKintosh.

Normal stress anisotropy and marginal stability in athermal elastic networks.

Soft Matter, 15 (7): 1666–1675, 2019.

• Jordan L. Shivers, Sadjad Arzash, Abhinav Sharma, and Fred C. MacKintosh.

Scaling Theory for Mechanical Critical Behavior in Fiber Networks. Physical

Review Letters, 122 (18): 188003, 2019.

• Sadjad Arzash, Jordan L. Shivers, Albert J. Licup, Abhinav Sharma, and

Fred C. MacKintosh. Stress-stabilized subisostatic fiber networks in a ropelike

limit. Physical Review E, 99 (4): 042412, 2019.

• Jordan L. Shivers, Sadjad Arzash, and Fred C. MacKintosh. Nonlinear

Poisson Effect Governed by a Mechanical Critical Transition. Physical Review

Letters, 124 (3): 038002, 2020.

• Sadjad Arzash, Jordan L. Shivers, and Fred C. MacKintosh. Finite size

effects in critical fiber networks. Soft Matter, 16 (29): 6784–6793, 2020.

• Jordan L. Shivers, Jingchen Feng, Anne S. G. van Oosten, Herbert Levine,

Paul A. Janmey, and Fred C. MacKintosh. Compression stiffening of fibrous

networks with stiff inclusions. Proceedings of the National Academy of

Sciences, 117 (35): 21037–21044, 2020.

• Sadjad Arzash, Jordan L. Shivers, and Fred C. MacKintosh. Shear-induced

phase transition and critical exponents in three-dimensional fiber networks.

Physical Review E, 104 (2): L022402, 2021.

• Dawei Song, Jordan L. Shivers, Fred C. MacKintosh, Alison E. Patteson,

and Paul A. Janmey. Cell-induced confinement effects in soft tissue mechanics.

Journal of Applied Physics, 129 (14): 140901, 2021.

• Katarzyna Pogoda, Fitzroy J. Byfield, Piotr Deptu la, Mateusz Cieśluk,  Lukasz
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Chapter 1

Introduction

1.1 Semiflexible polymers in living materials

Billions of years of evolution have produced an incredible diversity of biological

materials. Cells, the simplest unit of life, are soft machines comprising a flexible

outer membrane enclosing a densely crowded, constantly rearranging suspension of

subcellular components that vary tremendously in function and form, such as organelles,

cytoskeletal filaments, and motor proteins [1–3]. These components coordinate to carry

out the chemical and mechanical actions responsible for crucial cellular processes such

as motility, self-replication, and differentiation. Cells, in turn, interact mechanically

with the surrounding extracellular matrix to produce important tissue-level phenomena

such as wound healing, coordinated force generation in muscles, and morphogenesis

in development [4]. Interpreting how these components interact to give rise to these

essential biological phenomena, and understanding how and why problems arise in

disease, requires a quantitative description of cells and tissues as materials.

In spite of this diversity, one finds that basic underlying structures are repeated

in many different biological contexts. Perhaps the most important of these, from a

mechanical perspective, are the many varieties of semiflexible biopolymers, filamentous

1



Chapter 1. Introduction

Figure 1.1: Left: Mammalian cells with fluorescently labeled microtubules (green), actin
filaments (red), and DNA (blue), from http://rsb.info.nih.gov/ij/images/. Top right: Confocal
micrograph of a reconstituted network of collagen type-1, adapted from Ref. [5]. Bottom right:
Artificially colored electron micrograph of a blood clot showing fibrin (grey) and red blood cells
(red), from http://www.ikelos.info/electronmicroscopy/.

assemblies of proteins that assemble into mechanical scaffolding for cells, tissues, and

beyond [3, 6, 7]. Despite occupying a negligible fraction of the total volume, disordered

biopolymer networks are essential for the mechanical integrity of living materials,

especially given the large stresses and strains to which living things are generally

subjected in normal operation. For example, the biopolymer actin forms networks on

and around the cell membrane, as shown in Fig. 1.1a, and is essential for cell motility

[8], and the intermediate filament vimentin plays an essential role in protecting the

cell nucleus from large deformations [9]. Collagen (Fig. 1.1b) is the most abundant

protein in the extracellular matrix and is an essential contributor to the stability of

connective tissue under physiological stresses [10, 11]. The biopolymer fibrin (see Fig.

1.1c) plays an essential role in wound healing as the predominant structural element

of blood clots [12–14]; in the body, clots that form after an injury must sustain an

intact protective seal during a damaged vessel’s continued operation, often involving

2



1.1. Semiflexible polymers in living materials

large shear, tensile or compressive forces, in order to effectively prevent blood loss

and provide stable mechanical scaffolding for the formation of replacement tissue

[14, 15]. Fibrous networks are also produced in many contexts by plants, fungi and

animals for uses beyond internal tissue structure: for example, gels are produced by

fish and amphibians as external protective enclosures for eggs [16], hagfish produce

a remarkable fibrous gel to deter predators [17], and spiders construct webs and egg

cases from silk [18].

Figure 1.2: Measurements of the strain-dependent apparent shear modulus G in reconstituted
biopolymer gels, adapted from Ref. [19].

While fibrous networks generally occupy relatively small volume and mass fractions,

they provide biological materials with remarkable structural stability and tunable

mechanical behaviors that differentiate them from typical synthetic materials [20].

One such behavior is their tendency to stiffen significantly when stretched or sheared.

Fig. 1.2, adapted in part from Ref. [19], shows experimental measurements of the

strain-dependent stiffness of reconstituted actin, collagen and fibrin gels. In these

3



Chapter 1. Introduction

materials, the stiffness (the apparent shear modulus, in this case) increases by nearly

an order of magnitude or more in response to strains of less than 100%. Another

striking feature of filament networks is the manner in which they deform in response

to tensile stress, depicted in Figure 1.3. When such a network is uniaxially stretched

enough to stiffen, it responds with dramatic internal rearrangements and changes in

its macroscopic shape, coincident with similarly dramatic changes in its mechanical

properties; fibers become highly aligned along the extension axis, in tandem with a

significant increase in local density due to contraction along the transverse axes [21–24].

This alignment and contraction is a consequence of a fibrous material’s tendency to

stiffen significantly under low levels of applied extensional stress or strain, coupled

with its typically very small volume fraction and relatively weak resistance to applied

compression [25–28], as we discuss in Chapter 6. This behavior is especially evident in

the strain observed in a region between two contractile inclusions, e.g. cells [29–31] or

clusters of cells [23]. If the biopolymer of interest is fluorescently tagged, fluorescence

microscopy reveals an increased network density via the increased brightness in the

strained regions between cells (see Fig. 1.3d and e) [32]. This alignment effect plays

an important role in cell-cell mechanosensing in the extracellular matrix [29, 31, 32],

as it enables the transmission of forces over longer distances than would be possible in

a conventional linear elastic medium [31].

Semiflexible polymers are distinguished from flexible polymers by their larger

persistence length `p, a temperature-dependent quantity that describes the typical

length scale over which the local orientation of a filament remains correlated in the

presence of thermal fluctuations [34, 35]. While entropy drives flexible polymers into

crumpled, random conformations, the increased bending resistance of semiflexible

polymers prevents this crumpling while still, in many cases, remaining small enough for

entropic effects to contribute significantly to their elastic properties. Many biopolymers

are semiflexible, with persistence lengths that are typically significantly larger than
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1.1. Semiflexible polymers in living materials

(a)

(b)

(c)

(d)

(e)

Figure 1.3: (a) An isotropic reconstituted fibrin network, from Ref. [33]. (b) Alignment of
fibers along the (horizontal) axis of applied uniaxial extension in a fibrin network under strains of
up to 300%, from Ref. [24]. (c) Densification and reorientation of a fibrin network, with the
same concentration as in (a), by an embedded contractile cell, from Ref. [33]. Scale bar is the
same as in (a). (d) Between two contractile cells (green) in a fibrin network (white), a dense
and aligned ”tether” of fibers forms. Image from Ref. [32]. (e) Similar strain-driven alignment
and densification is seen when contractile cells (green) are embedded in collagen (red) networks.
Image from Ref. [23], scale bar 200 µm.

the length scale of a single subunit (molecule or protein) and instead on the order

of, or larger than, the distance between entanglements or crosslinks [36]. Even when

thermal effects are negligible (as is the case for stiffer filaments, like collagen fibers

[11]), thin elastic filaments necessarily exist in an intermediate regime between flexible

polymers and rigid rods. With or without entropic effects, the essential behavior that

these filaments share is a tendency to provide a soft bending-dominated response to

small deformations that transitions to a dramatically more stiff stretching-dominated

response as an applied extension straightens and elongates the filament.

Networks of semiflexible polymers display unique and materially useful mechanical

behaviors including, for example, strain-stiffening [37], compression softening [38],

and negative normal stress [39]. There is thus significant interest in improving our

understanding of how the properties of the individual filaments and crosslinking
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Chapter 1. Introduction

proteins, the network topology, and external passive and active influences such as cells

and molecular motors can change both the macroscopic and microscopic viscoelastic

properties of these networks. Continued work in this area will deepen our understanding

of biopolymer networks and inform the design of new functional materials.

1.1.1 Theory

Most biopolymers are classified as semiflexible, meaning that their persistence

length `p is long enough relative to the relevant contour length `c (for example, the

typical length between crosslinks) to avoid collapsing into a random coil, yet short

enough to ensure that thermally induced bending remains relevant. Thus, semiflexible

polymers constitute an intermediate between flexible polymers (`p � `c) and rigid rods

(`p � `c), and in contrast to both, they exhibit a nonlinear force-extension relation

[20].

The standard model for semiflexible polymers is the extensible worm-like chain,

which treats a polymer as a homogeneous cylindrical elastic rod of radius r with

Young’s modulus E. The stretching rigidity of such a rod, with units of force, is

the product of its Young’s modulus and cross-sectional area, µ = Eπr2, while its

bending rigidity is κ = EI = Eπr4/4, in which I = πr4/4 is the cross-sectional

moment of inertia of a homogeneous cylindrical rod with radius r [36]. We can write

the Hamiltonian of a single filament as the sum of two integrals

Hf =
µ

2

∫
ds

(
d`

ds

)2

+
κ

2

∫
ds

∣∣∣∣∂~t∂s
∣∣∣∣2 (1.1)

in which s is the arc length coordinate, d`/ds is the relative elongational strain at

coordinate s, ~t is the tangent vector along the fiber, and the integrals are taken

over the full fiber length. This Hamiltonian describes the energy of a semiflexible

polymer as a function of its conformation, allowing for the evaluation of a polymer’s
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1.2. Rigidity transitions

force-extension relation if the Young’s modulus E and filament radius r are known.

Here, the (temperature-dependent) persistence length is related to the bending energy

as `p = κ/(kBT ), in which kB is Boltzmann’s constant and T is the temperature.

As we are interested in the mechanics of spatially complex interconnected networks

of these filaments, computer simulations are necessary. Thus, we consider discrete

extensible worm-like chains [40], for which the Hamiltonian for each filament is

Hf =
µ

2

∑
ij

(`ij − `ij,0)2

`ij,0
+
κ

2

∑
ijk

(θijk − θijk,0)2

`ijk,0
(1.2)

in which the sums are taken over all consecutive pairs ij and triplets ijk of nodes

along the fiber length, `ij and `ij,0 are the length and rest length between nodes i

and j, θijk and θijk,0 are the angle and rest angle between bonds ij and jk, and

`ijk,0 = (`ij,0 + `jk,0)/2. For a network of many interconnected filaments, the full

network Hamiltonian is simply the sum over all filaments, H =
∑

f Hf .

1.2 Rigidity transitions

This thesis is largely concerned with the factors that control changes in stiffness, a

word that can refer to any of a wide variety of measures of a material’s resistance to

deformation. For most of the work in this thesis, we will focus on a system’s resistance

to shear, so the relevant stiffness is the shear modulus, G. If we apply simple shear

strain γ to a material sample, as sketched in Fig. 1.2, we will generally find that

it opposes this applied deformation with resistance in the form of shear stress, σ,

with units of force per area. The shear modulus, plotted for various reconstituted

biopolymer gels in Fig. 1.2, is simply the ratio of stress to strain, G = σ/γ, sharing

the same units as the stress.

A conceptually simple way to adjust a substance’s rigidity is to change its underlying

structure. This could include, for example, changing the volume fraction of particles
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Figure 1.4: The linear shear modulus G for packing-derived spring networks with dimensionality
d = 2 becomes nonzero when the average connectivity z exceeds the isostatic point zc = 2d.

[41, 42] in granular media and colloidal suspensions, changing the volume fraction

of air bubbles in a foam [43], or changing the number of springs in a random spring

network [44, 45]. This sort of structural rigidity transition can be understood in

view of a balance between a system’s number of degrees of freedom and number of

constraints (e.g. contacts between pairs of particles, connections between network

nodes), as pointed out initially by Maxwell [46]. He noted that a d-dimensional frame

with N nodes and average coordination number z is rigid if the Nc constraints satisfy

Nc ≥ dN − d(d+ 1)/2 [46]. Writing this in terms of the average number of constraints

per node z = 2Nc/N and letting N →∞ results in a simple rigidity criterion, z ≥ 2d.

The precise connectivity at which such a structure becomes rigid is referred to as the

isostatic point, zc = 2d. In Fig. 1.4, we plot the linear shear modulus G = limγ→0 σ/γ

for random spring networks as a function of the average connectivity z; networks with

z < zc are referred to as floppy, with G = 0. More specifically, a floppy material is one
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1.2. Rigidity transitions

that can rearrange in some manner without paying an energy penalty. The small-strain

mechanical properties of systems near the isostatic point become quite unusual, with

power law scaling of the elastic moduli and large nonaffine fluctuations (deviation

from a macroscopically homogeneous strain) that signal a diverging correlation length.

In other words, in amorphous materials, the isostatic point corresponds to a phase

transition between macroscopically floppy (zero stiffness) and rigid (finite stiffness)

regimes. See, for example, prior work on jammed packings [47], foams [43], and

random spring networks [48]. While biopolymer networks are generally structurally

“subisostatic,” they have nonzero shear moduli because of the additional constraints

imposed by the bending rigidity of the filaments.

Figure 1.5: From Ref. [49]: An illustration of a string under tension T subjected to perpendicular
deflection. The apparent rigidity of the string is highly sensitive to the tension exerted on its
ends.

However, changes in structure are not the only way for a system to attain rigidity.

Maurice Biot begins the first chapter of Mechanics of Incremental Deformation [49]

with the statement

It is well known that a state of initial stress in a deformable medium induces

mechanical properties which depend mainly on the magnitude of the stress

and are quite distinct from those associated with the rigidity of the material

itself.

pointing out the very simple example of a string under tension, sketched in Fig. 1.5.

The apparent rigidity of the string, as measured by the force F required to induce a
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Chapter 1. Introduction

deflection w, is extremely sensitive to magnitude of the tension T exerted on its ends.

If the tension is removed and the ends of the spring are brought together closer than

the at-rest length of the string, the string appears to have no resistance to deflection.

Yet, when T is finite, the string resists deflection and thus appears to have a finite

stiffness.

Figure 1.6: Schematic phase diagram for the strain-controlled rigidity transition, adapted from
Ref. [50].

Likewise, for the random spring networks sketched in Fig. 1.4, one finds that a

floppy network with G = 0 (i.e. z < zc) can develop rigidity under an applied stress

or strain. For example, as the authors of Ref. [50] depicted in the phase diagram

reproduced in Fig. 1.6, so-called “subisostatic’ networks develop rigidity at a critical

shear strain γc that depends on the network’s connectivity. This critical strain marks

a strain-controlled transition between floppy and rigid regimes, and one observes the

same sort of unusual criticality-associated properties as those observed in the isostatic

case (e.g. diverging strain fluctuations and power law scaling of the elastic moduli)

[50–52]. In elastic networks with stretching and bending interactions, e.g. biopolymer

gels, this strain-driven rigidification corresponds to a smooth crossover between a soft,

10



1.3. Rheology

bending-dominated regime and a stiff, stretching-dominated regime. That said, the

effect is still substantial even for nonzero bending rigidity; for example, the data in

Fig. 1.2 show that shearing a fibrin gel to γ ≈ 1 leads to a roughly 20-fold increase in

G.

1.3 Rheology

Rheology is the study of the deformation and flow of matter [53]. In general, the

term refers to methods for characterizing a material’s viscoelastic response to an

applied deformation. This is especially important for biopolymer gels, for which the

apparent viscoelastic properties can vary tremendously depending on the type and

magnitude of the applied deformation as well as the time and length scales involved.

Methods for measuring a material’s rheological properties fall into two broad categories:

microrheology [54–56], in which material properties are deduced from the behavior of

one or more microscopic probes that are either passively observed or actively subjected

to external forces induced by e.g. optical tweezers [57] or magnetic fields [58], and

macrorheology, in which one measures a macroscopic sample’s response to a stress

or strain applied by a device called a rheometer. This thesis primarily discusses

simulations that are analogous to macrorheology; in general, we apply macroscopic

strains to a simulated bulk sample and measure the resulting stress. Two common

torsional rheometer geometries, sketched in Fig. 1.7, are the cone-plate rheometer,

which enables the application of a uniform simple shear strain, and the parallel plate

rheometer, which applies a non-uniform shear strain but has the advantage of allowing

the measurement of a sample’s response to shear as a function of applied uniaxial

compression or extension [53, 59, 60].

In a torsional rheometer, we apply some time-dependent shear strain γ(t) to

a sample and measure (or, stated more accurately, compute from the torque) the
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Figure 1.7: Schematic representation of (a) a cone-plate rheometer, in which the applied shear
strain is uniform across the sample, and (b) a parallel plate rheometer, which applies non-uniform
shear strain. Shear strain is applied by rotating the bottom plate and the corresponding axial
force and torque on the top plate are measured and used for computing the normal and shear
stresses.

resulting shear stress σ(t), or vice-versa. A commonly used method for measuring

a material’s linear viscoelasticity is small amplitude oscillatory shear, in which, for

a strain-controlled protocol, we apply an oscillatory strain with amplitude γ0 and

frequency ω,

γ(t) = γ0e
iωt (1.3)

and measure the resulting shear stress,

σ(t) = σ0e
iωt = γ0G

∗(ω)eiωt (1.4)

Here, G∗(ω) = G′(ω) + iG′′(ω) is the complex modulus. The real term, G′(ω), is

the storage modulus, which essentially measures a material’s elastic character; in

the zero-frequency limit, it is equivalent to the linear shear modulus. The imaginary

term, G′′(ω), is the loss modulus, which describes a material’s viscous or dissipative

character.

To probe a material’s response to larger strains, a strategy that has proven successful

is the application of superimposed small amplitude oscillatory strain to pre-strained or
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1.4. Outline of this thesis

pre-stressed samples [37]. The principle is the same, however. For a strain-controlled

protocol, we subject the sample to a prestrain γ0, about which we apply an oscillatory

change in strain

δγ(t) = δγ0e
iωt (1.5)

and we measure the resulting change in stress,

δσ(t) = δσ0e
iωt = δγ0K

∗(ω)eiωt (1.6)

In this case, the complex differential modulus K∗(ω) = K ′(ω) + iK ′′(ω) is a function

of the applied prestrain. In the low-frequency limit, we recover the static differential

modulus K = limω→0K
′(ω) = ∂σ/∂γ.

1.4 Outline of this thesis

This dissertation is motivated by the ubiquity of fibrous network structures and

the importance of their unique properties in living systems, and focuses on three major

areas of the rheology of biopolymer networks and their composites: (1) rheological phase

transitions, (2) normal stresses and the nonlinear Poisson effect, and (3) compression

stiffening in cells and tissues. We will utilize theoretical and computational models

to explore these behaviors and learn lessons for the design of new materials with

responsive, tunable properties.

Chapter 2 describes quantitative models for semiflexible polymer networks that

are used elsewhere in this thesis. We first describe an analytical calculation of a gel’s

strain-dependent stress tensor that relies on the assumption of affine deformation.

Then, we consider numerical models for disordered networks that properly account for

nonaffine deformation. After describing the construction of these systems, we outline

the manner in which we subject them to macroscopic strain and discuss methods for
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Chapter 1. Introduction

computing the resulting stress tensor.

Chapter 3 focuses on our efforts to understand nonlinear phenomena controlled by

normal stresses in biopolymer networks, extending prior work aimed at understanding

the phenomenon of “negative normal stress” [39, 61]. We focus on the behavior of

shear-driven normal stresses near the strain stiffening transition and explore how

these are controlled by network structure, filament properties and proximity to an

underlying point of marginal stability. We further describe the unusually broad force

distributions that develop in these networks at the onset of rigidity.

Chapter 4 describes a theoretical and computational study of the scaling behavior

of disordered networks near the onset of rigidity. We use real space renormalization in

tandem with coarse-grained network simulations to characterize the strain-controlled

and connectivity-controlled rigidity transitions; specifically, we develop and test rela-

tionships between the critical exponents governing the scaling of the apparent stiffness

and nonaffine strain fluctuations with the distance to the critical strain. We investigate

these scaling relationships further in later work (see Refs. [62] and [63]).

Chapter 5 discusses a study of the dynamics of semiflexible polymer networks

embedded in a viscous medium. We find that stress relaxation in prestressed or

prestrained networks in the vicinity the strain stiffening transition reflects a diverging

characteristic timescale controlled by proximity to the transition. We then demonstrate

that this critical slowing down is a direct consequence of the coupling between divergent

nonaffine fluctuations and the dissipative interactions between the network and solvent,

and we describe a simple linear relationship between the nonaffinity and effective

viscosity.

Chapter 6 discusses the nonlinear Poisson effect, a surprising consequence of

normal stresses that develop in disordered networks under applied extensional strain.

We demonstrate that this unusual effect, which corresponds to dramatic contraction

that occurs upon extension-driven stiffening, is associated with a mechanical phase
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1.4. Outline of this thesis

transition and, consequently, coincides with large nonaffine fluctuations and power law

scaling of the various mechanical quantities, just as we observed earlier in previous

chapters in systems under applied shear. We then characterize how these effects are

suppressed by bending interactions and controlled by network connectivity in a variety

of network structures.

Chapter 7 discusses an investigation of the cause of the unusual compression

stiffening effect observed in many living tissues. We describe a physical mechanism

for this effect that involves the emergence of a compression-driven, tension-stabilized

regime – a cooperative effect that reflects both the strain stiffening properties of the

interstitial network and the volume fraction-controlled steric interactions between the

embedded particles. Using a minimal model of interconnected repulsive particles, we

develop a predictive phase diagram that describes the dependence of this effect on

the volume fraction of particles and the network’s critical strain, which we test using

simulations.
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Chapter 2

Modeling fiber networks

This chapter briefly discusses the quantitative models used throughout the rest
of this thesis. We first describe an analytical calculation of the stress tensor for
an idealized material that is initially isotropic and that undergoes strictly affine
deformation. Then, we describe methods for contructing and simulating the rheology
of disordered networks with various underlying structures.

2.1 Affine isotropic network model

We first consider a simple isotropic “network” model that captures the response

of a single filament to an applied deformation, averaging over all possible initial

filament orientations. This model captures the mechanics of a system in which the

deformation is affine and thus described on all scales by the deformation gradient

tensor Λ. This model has been used in prior work to compute the stress-strain

response of an affinely-deforming isotropic network of semiflexible filaments with a

proper nonlinear force-extension relation [19, 35]. For simplicity, we will consider a

simple Hookean force-extension relation here. This will provide a baseline expectation

for the behavior we should expect from a disordered network in an affine (e.g. very

highly z or high κ) limit.

Consider a filament segment with initial orientation n̂ subjected to deformation

gradient tensor Λ(γ). The deformation changes the filament’s length and orientation,

resulting in a tension τ directed along its new orientation. Treating the filament
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2.1. Affine isotropic network model

as a linear elastic element with stretching stiffness µ and initial length `0 = 1, we

can write the tension vector as τ = τΛn̂/ |Λn̂|, with τ = µ(|Λn̂| − 1). Taking the

average, over all initial filament orientations, of the product of the i component of the

tension, τΛilnl/ |Λn̂|, and the line density of filaments crossing the j plane after the

deformation, ρ
detΛ

Λjknk, yields the stress tensor [19, 64],

σij =
ρ

detΛ

〈
τ

ΛilnlΛjknk
|Λn̂|

〉
. (2.1)

We will consider a system under volume-preserving simple shear,

Λ(γ) =


1 0 γ

0 1 0

0 0 1

 (2.2)

for which detΛ = 1 and the transformed orientation vector is

Λn̂ =


sin θ cosϕ+ γ cos θ

sin θ sinϕ

cos θ

 . (2.3)

Thus, for filaments in 3D with initial polar angle θ and azimuthal angle ϕ, the stress

tensor is

σij =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

ΛilnlΛjknk
|Λn̂|

]
, (2.4)

We compute the xz, xx, and zz components of the stress tensor for the 3D case as

follows:

σxz =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

(sin θ cosϕ+ γ cos θ) cos θ

|Λn̂|

]
(2.5)

σxx =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

(sin θ cosϕ+ γ cos θ)2

|Λn̂|

]
(2.6)
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Chapter 2. Modeling fiber networks

σzz =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

cos2 θ

|Λn̂|

]
(2.7)

The integrals are taken over the ranges 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.

We repeat the same process for the 2D case, in which the deformation tensor for

simple shear is

Λ(γ) =

1 γ

0 1

 (2.8)

and the transformed orientation vector is

Λn̂ =

cos θ + γ sin θ

sin θ

 . (2.9)

The resulting components of the 2D stress tensor are calculated as follows:

σxz =
ρ

2π

∫
θ

dθ

[
τ

(cos θ + γ sin θ) sin θ

|Λn̂|

]
(2.10)

σxx =
ρ

2π

∫
θ

dθ

[
τ

(cos θ + γ sin θ)2

|Λn̂|

]
(2.11)

σzz =
ρ

2π

∫
θ

dθ

[
τ

sin2 θ

|Λn̂|

]
(2.12)

The components of the stress tensors for the 2D and 3D cases are shown in Fig.

2.1a. At low strains, σxz ∼ γ and σxx ∼ σzz ∼ γ2. At larger strains (above γ ≈ 1),

σzz approaches a constant value, while σxz and σxx both “stiffen” due to filament

reorientation before again growing as σxz ∼ γ and σxx ∼ γ2. The effect of this

reorientation in stiffening the network is more apparent in the differential shear

modulus, K = ∂σxz/∂γ, shown in Fig. 2.1b. The large upper limit of γ in Fig. 2.1 is

used simply to highlight the scaling of the stress tensor components at large strains.
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Figure 2.1: (a) Selected components of the stress tensor σ for the 2D and 3D isotropic network
models. For this data, the line density is the inverse of the area (volume) of a circle (sphere) of
diameter `0 = 1, ρ2D = 4/π and ρ3D = 6/π. (b) The differential shear modulus K stiffens due
to reorientation of the initially isotropically distributed springs.

2.2 Disordered network models

While the affine isotropic network model is a useful limit to consider, it ignores

the obviously important contributions of orientational disorder and nonaffine rear-

rangement. To more accurately capture the mechanics of actual semiflexible polymer

networks, we turn to simulations of disordered networks.

2.2.1 Lattice-based networks

The mechanical properties of disordered elastic networks have long been studied

via lattice-based models [65, 66], including the two-dimensional square [67], triangular

[48, 65], Kagome [68, 69], and honeycomb [51] lattices, as well as the three-dimensional

diamond [70, 71], face-centered cubic [48, 50], and 3D-kagome [72] lattices. Some

of these have strange, singular mechanical properties originating from their regular

structure; for example, the square, cubic and regular honeycomb lattices exhibit a

differential shear modulus with quadratic dependence on the strain, K ∼ γ2, in the low-
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strain limit and thus have no linear modulus G without the addition of bond-bending

interactions.
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Figure 2.2: (a) Examples of various periodic lattice structures. We begin with regular lattices
(left column), from which we generate disordered diluted networks (center column) by randomly
cutting bonds until the desired coordination number z is reached (z = 3.3 here for the diluted
triangular, Kagome and square networks, and z = 2.8 for the diluted honeycomb network). We
can further introduce disorder and mitigate lattice effects by displacing each node from its initial
location on the lattice – in this case, we do so by a random distance d ∈ [0, δmax/2] in a random
direction – resulting in a so-called generic diluted network (right column) [44]. The networks
shown in the right column have δmax = 0.7. For all diluted networks shown here, dangling ends
and dangling clusters have been removed.
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2.2. Disordered network models

We construct triangular networks by first placing system-spanning fibers on a

periodic triangular lattice and then adding a freely-rotating crosslink at each inter-

section. Where fibers cross the boundaries, they reconnect with themselves. After

the crosslinks are added, each node in the network has a connectivity of 6, and the

inter-crosslink distance is the same as the lattice spacing, l0. To ensure that no

fiber is system-spanning, we then cut a single randomly chosen bond on each fiber.

Since the macroscopic coordination number z = 6 of the initial triangular lattice is

greater than the two-dimensional isostatic coordination zc = 4, generating subisostatic

networks requires removing additional bonds in a process known as dilution, in which

we randomly cut bonds until the desired z is reached. Alternatively, we can reduce

the local coordination number of the triangular lattice to z = 4 by turning it into a

“phantom” triangular lattice [48, 73], which involves instead adding a crosslink only

between two of the three fibers, chosen randomly, at each intersection.

The honeycomb lattice is a sublattice of the triangular lattice with maximum

connectivity z = 3. As we mentioned before, the regular honeycomb lattice is

anomalous, in that without bending interactions it has no linear shear modulus.

However, with bending interactions it is a reasonable model for branched networks;

moreover, the undiluted lattice can be made to behave as a diluted lattice, with

a tunable critical strain, by randomly distorting the node locations [51]. The face-

centered cubic (FCC) and phantom FCC lattices are generated using the same method

as the triangular and phantom triangular lattices, in 3D, as in prior work [36]. The

essential differences are that the undiluted FCC lattice has local connectivity of z = 12,

whereas the isostatic connectivity in 3D is zc = 6. Phantom FCC lattice generation

requires randomly crosslinking 3 pairs of fibers at each intersection, resulting in a

connectivity of z = 4.

Upon straining an undistorted network (one with long fibers that are perfectly

straight at zero strain), one will typically observe an initial low-strain softening of
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Chapter 2. Modeling fiber networks

the shear modulus K [74] associated with the buckling of the long fibers. This effect

becomes quite significant in networks with high mean connectivity. In order to mitigate

this effect, after generating each network we can distort each node by a random distance

of magnitude δmax/2 in a random direction, resulting in a generic network [44], and

subsequently redefine the network’s rest lengths and rest angles. Figure 2.3 shows the

buckling-related softening effect and its mitigation in triangular networks.
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Figure 2.3: Left: K vs. σxy for undistorted phantom triangular networks at various connectivities
with κ = 10−4 and network size W = 60. The dip in K due to buckling is apparent for networks
with higher 〈z〉, and hence longer fibers. Right: K vs. σxy for the same networks with δmax = 0.6.

Lattice-based networks are more simple to implement computationally than off-

lattice network structures and, due to the uniform lattice spacing l0, are quite nu-

merically stable. This means that the energy landscape is relatively easy to traverse

during energy minimization, in comparison to networks with significant bond-length

heterogeneity. However, an important disadvantage of lattice-based networks is that

even with the addition of topological and/or positional disorder, they by definition do

not have isotropic angular distributions. For example, the regular triangular lattice

only has bonds oriented at 0°, 60°, and 120° with respect to the horizontal. Particularly

at low strains, these biased angular distributions can lead to unusual behavior of the

normal stresses, as we will see in Chapter 3.
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2.2. Disordered network models

2.2.2 Mikado networks

The Mikado network is a conceptually simple, orientationally isotropic (in the

limit of large systems) disordered network model that has been used extensively to

study the mechanical behavior of semiflexible polymer networks [40, 52, 75–77]. The

model’s name derives from the game Mikado, also known as pick-up sticks, for which

the setup involves randomly dropping sticks onto the ground to form a disordered pile.

Generation of a Mikado network involves essentially the same process: rods of length

`r are placed with a random orientation in a random location within periodic box of

side length L. Where two rods intersect, a crosslink is added. Bending interactions are

considered along the fibers and stretching interactions are considered between pairs of

crosslinks. The relevant length scales in these networks are the average inter-crosslink

distance lc and the box size L.

Figure 2.4: A small Mikado network with dangling ends removed.

Benefits of Mikado networks include the approximate angular isotropy (in the

limit of large systems) and the convenient fact that they are always subisostatic,
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since the average connectivity is necessarily always less than zc = 4. However, a

major computational disadvantage of Mikado networks is that small inter-crosslink

distances, which occur often due to the random nature of the fiber deposition, can

make simulating large Mikado networks with bending interactions very difficult due

to slow energy minimization.

2.2.3 Jammed packing-derived networks

Structures derived from jammed disk or sphere packings are a useful alternative to

Mikado networks and have been used quite extensively in the study of disordered elastic

networks [78–80]. These avoid the numerical instability caused by short segments and

maintain angular isotropy in the large-system limit. To generate jammed packings

of soft disks, we first specify N = L2 positions, in a box of side length L, that will

correspond to the centers of the soft disks. Half of the disks have radius r0 and half

have radius r0f , in which f is some ratio specified to avoid crystallization associated

with monodisperse radii (see Fig. 2.5b). A commonly used value is f = 1.4 [81, 82],

which produces a packing with no macroscopic order (see Fig. 2.5a). After seeding

initial locations, the radii of the disks are incrementally increased from r0 = 0 in small

steps. Overlapping disks interact via a simple one-sided (repulsive) spring potential,

such that the energy between disks i and j, with radii ri and rj, respectively, is

Uij =


µd
2

(ri + rj − rij)2 if rij ≤ ri + rj

0 if rij > ri + rj

(2.13)

in which µd is the disk spring constant and rij is the distance between disks i and

j. The total energy of the system is simply the sum of all inter-disk interaction

potentials, Utot = 1
2

∑
i

∑
j 6=i Uij , where the factor of 1/2 accounts for double-counting.

The energy is relaxed after each growth step using the FIRE algorithm [83], until the
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2.2. Disordered network models

contact network (the network of overlapping spheres) of the mechanically equilibrated

structure has the desired connectivity. A few resulting structures are shown in Fig.

2.5.

Figure 2.5: Jammed packings of 900 soft disks with z ≈ 4 generated using the compression
protocol. Packings of bidisperse disks with ratio of radii 1: 1.4 (left) yield a highly disordered
contact network (shown by the black lines, and excluding rattlers), whereas radially monodisperse
packings (right) exhibits large subsections with crystalline order.

After generating an initial isostatic or superisostatic contact network, we dilute the

network to a subisostatic connectivity by randomly removing bonds. We also remove

dangling ends and dangling clusters during the dilution process (see Fig. 2.7), so that

all bonds contributing to the reported connectivity of the final network contribute

to its mechanical response under applied strain. We include stretching interactions

between network nodes, as well as bond-bending interactions between each bond and

all of its nearest neighbors. Note that the contact network is drawn only between

intersecting disks, such that “rattlers,” disks that move freely and do not contribute

to the packing’s finite energy, are not included.

These networks constitute a simple alternative to lattice-based networks that is

positionally disordered, numerically stable and easily extended to three dimensions

(see Fig. 2.6). We make use of three-dimensional packing-derived networks in Chapters
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Figure 2.6: A small three-dimensional packing-derived network with average connectivity z = 3.
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Figure 2.7: (a) Image of a network with dangling and disconnected clusters shown in red. (b)
A dangling cluster (red) is defined as a cluster of bonds connected to the rest of the network by
only one bond. These are detected and removed by removing “bridges,” bonds which, if cut,
disconnect the graph. Bridges are identified as biconnected components containing only one bond.
(c) We remove disconnected clusters (red) by identifying all independent connected components
and retaining only the largest one. The Boost graph library [84] is utilized for identification of
connected and biconnected components.

3, 6, 5 and 7.
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2.2.4 Generalized Lees-Edwards boundary conditions

A typical rheological simulation involves applying a macroscopic strain and mea-

suring the resulting macroscopic stresses. In an experiment, this would be done by

placing a sample of the substance of interest in a rheometer and imposing macroscopic

strain by moving one or more of the sample boundaries (with the details depending

on the geometry of the rheometer). In order to measure bulk properties of the mate-

rial, the experimental geometry must be large enough safely ignore edge effects. In

simulations, achieving this limit can be difficult due to computational limitations,

so periodic boundary conditions are often used. Since periodic boundary conditions

remove edges, macroscopic strain cannot be applied the conventional way, i.e. by

applying a stress along one of the edges. Instead, we apply macroscopic strain by

transforming the lattice vectors that define the spatial relationships between adjacent

images of the periodic network. The resulting modified boundary conditions are known

as Lees-Edwards boundary conditions [85] (usually used in the application of simple

shear), which allow us to apply an arbitrary deformation gradient tensor to a periodic

system.

With typical Lees-Edwards boundary conditions, and assuming for the sake of

simplicity that the periodic box is an unrotated rectangle, the locations of all the

periodic images of each node are defined by multiples of two orthogonal vectors, ~u and ~v.

Let ~u be the vector connecting a node to its image on the right, such that −~u connects

it to its image on the left, and ~v and −~v connect it to its upper and lower images (the

actual orientation of the rectangle relative to the horizontal depends on the initial

rotation of the system). For typical, unrotated systems with stationary boundary

conditions, ~u and ~v simply correspond to the horizontal and vertical dimensions of

the system. With Lees-Edwards boundary conditions, macroscopic strain is applied

by transforming the boundary vectors according to the deformation gradient tensor.

Let the initial boundary vectors be ~u0 and ~v0. To apply strain to a system that
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has been rotated by angle θ, we apply the same rotation by θ to the boundary vectors

using the rotation matrix,

R =

cos θ − sin θ

sin θ cos θ

 (2.14)

Applying the deformation gradient tensor Λ then involves just changing the boundary

vectors, ~u = ΛR~u0 and ~v = ΛR~v0. For simple shear γ with θ = 0, we have the typical

Lees-Edwards boundary conditions, i.e. ~u = (Lx + Lyγ)x̂+ 0ŷ and ~v = 0x̂+ Lyŷ.

To probe a system under quasistatic strain, we apply an incremental affine (ho-

mogeneous) shear strain step to all of the nodes, after which the system’s energy is

relaxed with the generalized Lees-Edwards boundary conditions enforced. After this

relaxation, the properties of the energy-minimized system (e.g. its stress tensor) are

computed.

2.2.5 Computing the stress tensor

Here, we will discuss two equivalent methods for computing the stress tensor for a

system under quasistatic conditions: calculation using the principle of virtual work

and calculation of the virial stress tensor. According to the principle of virtual work,

the variation in the system’s energy δH due to an infinitesimal applied strain δγ can

be expressed as δH = V σxzδγ, such that we can express the shear stress as

σxz(γ) =
1

V

∂H(γ)

∂γ
= lim

δγ→0

1

V

H(γ + δγ)−H(γ)

δγ
(2.15)

Thus, for a system at shear strain γ, we can apply a small shear strain increment δγ

and measure the change in energy of the system δH = H(γ + δγ) to estimate σxz(γ)

numerically. It is important to note that H(γ) is the energy of the system after energy

minimization at the imposed strain γ. In practice, we can apply incremental shear

strain steps to the system over some strain range, relaxing the energy at each strain
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in order to determine H(γ), and subsequently compute the numerical derivative of

the ∂H(γ)/∂γ curve to determine σxz(γ). We can likewise apply the virtual work

principle to determine the normal stresses as a function of shear strain. After relaxing

the system at some shear strain γ, we apply small uniaxial strains δεx and δεz in order

to determine the normal stresses σxx and σzz:

σxx(γ) =
1

V

∂H(γ)

∂εx
= lim

δεx→0

1

V

H(γ, δεx)−H(γ, 0)

δεx
(2.16)

σzz(γ) =
1

V

∂H(γ)

∂εz
= lim

δεz→0

1

V

H(γ, δεz)−H(γ, 0)

δεz
(2.17)

Note that, when using this method, the applied strain increment must be small enough

to yield an accurate numerical derivative but large enough to avoid errors due to the

tolerance used in the energy minimization. The main disadvantage of the virtual work

method is that it requires a numerical derivative of H in order to calculate any of the

stresses. Even worse, computing K = ∂σxz/∂γ requires two numerical derivatives. As

a result, this method can lead to a significant noise in the calculation of K.
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Figure 2.8: The various components of the 2D stress tensor computed via the virtual work
method and the virial stress tensor calculation are equivalent These data correspond to a triangular
lattice-based network with W = 40, z = 3.4, and κ = 10−6.
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We can instead compute the virial stress tensor to avoid taking a numerical

derivative. Here we briefly derive the expression for the virial stress tensor following

the argument of Doi and Edwards in Ref. [86]. Considering an arbitrary plane

intersecting the network at position h perpendicular to the β-axis, the αβ-stress

component on this plane, σαβ(h), is defined as the α component of the force Fα(h)

exerted by the network above the plane onto the network below the plane, normalized

by area A of the network intersected by the plane. Thus, we can compute the

macroscopic stress component σα,β by averaging σα,β(h) over the full length of the

network along the β-axis, which we denote L:

σα,β = 〈σα,β(h)〉h = 〈Fα(h)〉h/A (2.18)

σαβ =
1

AL

∫ L

0

dhFα(h) (2.19)

Noting that V = AL,

σαβ =
1

V

∫ L

0

dhFα(h) (2.20)

Ignoring solvent effects, we can define Fα(h) in terms of the α component of the force

~fij exerted by node j on node i, yielding

Fα(h) =
∑
i,j

fijαΓ(h− riβ)Γ(rjβ − h) (2.21)

in which

Γ(η) =


1 for η > 0

0 for η < 0

(2.22)

and rkβ is the β component of the position vector of node k, ~rk. Inserting the definition
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for Fα(h) into Eq. 2.20, we find

σαβ =
1

V

∑
i,j

fijα

∫ L

0

dhΓ(h− riβ)Γ(rjβ − h) (2.23)

σαβ =
1

V

∑
i,j

fijα(rjβ − riβ)Γ(rjβ − riβ) (2.24)

σαβ =
1

V

(
−1

2

∑
i,j

fijα(riβ − rjβ)

)
(2.25)

σαβ =
1

2V

∑
ij

fijα (rjβ − riβ) (2.26)

This yields the viral stress tensor,

σαβ =
1

2V

∑
ij

fijαrijβ (2.27)

Here, ~rij = ~rj − ~ri is the vector between nodes i and j, and ~fij is the force acting on

node i due to its interaction with node j. Note that the factor of 1/2 is included to

correct for double counting in the summation. Using this expression, we can compute

all components of the stress tensor using only the node locations and forces between

nodes as inputs. While this method offers a computationally cheaper and slightly

more accurate alternative to the virtual work method, we find that both are suitable

for our simple simulations (see Fig. 2.8).
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Chapter 3

Normal stress anisotropy and marginal

stability in athermal elastic networks

This chapter is adapted from Ref. [87]:

Jordan L. Shivers, Jingchen Feng, Abhinav Sharma, and Fred C. MacKintosh.
Normal stress anisotropy and marginal stability in athermal elastic networks.
Soft Matter, 15 (7): 1666–1675, 2019.

3.1 Abstract

Hydrogels of semiflexible biopolymers such as collagen have been shown to contract

axially under shear strain, in contrast to the axial dilation observed for most elastic

materials. Recent work has shown that this behavior can be understood in terms

of the porous, two-component nature and consequent time-dependent compressibil-

ity of hydrogels. The apparent normal stress measured by a torsional rheometer

reflects only the tensile contribution of the axial component σzz on long (compressible)

timescales, crossing over to the first normal stress difference, N1 = σxx − σzz at short

(incompressible) times. While the behavior of N1 is well understood for isotropic

viscoelastic materials undergoing affine shear deformation, biopolymer networks are

often anisotropic and deform nonaffinely. Here, we numerically study the normal

stresses that arise under shear in subisostatic, athermal semiflexible polymer networks.

We show that such systems exhibit strong deviations from affine behavior and that

32



3.2. Introduction

these anomalies are controlled by a rigidity transition as a function of strain.

3.2 Introduction

Normal solids and liquids exhibit shear stress under imposed shear deformation.

With the exception of simple Newtonian liquids, most materials also develop so-called

normal stresses in response to shear. Unlike shear stress, however, these stresses are

directed perpendicular to surface on which they act and appear as diagonal terms in

the stress tensor. In the case of elastic solids, a common manifestation of normal stress

is the Poynting effect, in which a solid tends to elongate in response to torsional strain.

In a classic series of experiments, Poynting observed such elongation for a variety

of systems, ranging from simple metal wires to rubber [88, 89]. By symmetry, this

elongation should not depend on the sign or direction of the applied torsion, leading

to lowest-order response that is expected to be quadratic in the the strain. This makes

the Poynting effect a fundamentally nonlinear phenomenon. This is one reason why

normal stresses are typically less apparent than the shear stress, which varies linearly

with strain. Nevertheless, normal stresses have very dramatic consequences, including

both rod climbing and tubeless siphoning, as well as die swell [90]. These phenomena,

as well as the Poynting effect, correspond to positive normal stress.

In a cone-plate rheometer, shown schematically in Fig. 3.1a, the measured axial

force F in torsion depends not only on the tensile axial stress component σzz, but

also on the azimuthal component σxx, which acts as a hoop stress. For incompressible

materials, this hoop stress generates a radial pressure gradient that contributes

vertical thrust that counteracts σzz. In this case, the sign of the first normal stress

difference, N1 = σxx − σzz determines the sign of the measured axial force for sheared

incompressible materials, according to F = N1πR
2/2. The first normal stress difference,

N1, is fundamental to the nonlinear viscoelastic response of materials and is almost
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universally positive, particularly for solids. For typical polymer networks, positive N1

results from the fact that polymer extension in the azimuthal direction tends to be

greater than in the axial direction [91]. It was thus surprising when biopolymer gels,

such as fibrin and collagen, were recently identified as apparent exceptions to this,

with an inverted or negative Poynting effect [39, 92]. Theory and simulation studies

[39, 76, 92–97] have shown that this observed negative normal stress is a generic

feature of semiflexible networks, playing a significant role in the onset of the nonlinear

strain-stiffening response characteristic of biopolymer networks [95, 97, 98]. However,

as recently demonstrated [61, 99], this anomaly for gels can be understood to arise

from their porous, two-component nature. This porosity renders the gels effectively

compressible on long enough time scales, over which the radial pressure gradient

relaxes as the solvent flows from the sample boundaries, such that only the negative

contribution from σzz is measured, with F = −σzzπR2 [61, 99]. Consistent with this

interpretation, these networks showed a normal (positive) Poynting effect on short

enough time scales, in which the gels become effectively incompressible, indicating

that the normal stress difference N1 remains positive.

For isotropic viscoelastic materials undergoing affine (homogeneous) simple shear

deformation, the Lodge-Meissner relation relates N1 to the shear stress σxz as N1 =

σxzγ [91]. This relation, first identified by Rivlin for elastic solids [100], holds for any

material in which the principal strain axes and principal stress axes remain parallel

throughout the applied deformation, which is satisfied as long as the material is initially

isotropic and deforms affinely [101]. Prior work has shown that networks of athermal

fibers, of which collagen is a prime example, undergo highly nonaffine deformation

under imposed shear strain. In such networks, it was recently shown that the degree

of nonaffinity depends on the system’s proximity to a strain-controlled transition that

occurs along a critical line in the γ-z plane, where γ is the applied shear strain and z

is the connectivity, or average number of connections to each network junction [50].
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Figure 3.1: (a) Schematic of a hydrogel sample in a cone-plate rheometer of radius R, with
coordinates defined such that the x-axis and z-axis are oriented along the azimuthal (shear)
and axial (gradient) directions, respectively. Positive axial force F corresponds to the sample
pushing up against the cone. (b) Applying sufficient shear strain γ to a subisostatic (z < zc)
network invokes a transition from a bending-dominated regime (floppy in the absence of bending
interactions) below γc to a stretching-dominated regime above γc. The details of the phase
boundary γc(z) (blue line) depend on the network structure.

Strictly speaking, this transition occurs at finite strain for central-force networks below

their isostatic point of (linear) marginal stability, as sketched in Fig. 3.1b. For fibers

with finite bending rigidity, this line of marginal stability is manifest in a crossover

from a soft, bending-dominated regime to a stiff, stretching-dominated regime. This

nonlinear stiffening transition coincides with the development of a highly heterogeneous

and anisotropic network of tensile force chains aligned primarily along the tension axis,

similar to the marginally stable networks of compressive force chains that develop at

the jamming transition in sheared granular packings [102, 103] and frictional force

chains in shear-thickening suspensions [104, 105], both of which align instead along

the compression axis. While force chains have been observed in fibrous networks

[106–109], the properties of force chain networks that develop during macroscopic

strain stiffening, and their effects on the normal stresses, have not been extensively

studied. In shear-thickening suspensions, the formation of such force networks are
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typically associated with anomalous, and sometimes negative, values of N1 [110–112].

Given the similarity of the force chains in sheared semiflexible fiber networks to those

observed in packings/suspensions, as well as the significant nonaffinity observed near

the strain-stiffening transition, it is not obvious that the Lodge-Meissner relation

should apply, or even that N1 should be positive for these networks. While some

prior theory and simulation [76, 107] studies have suggested that semiflexible networks

may generally satisfy the Lodge-Meissner relation, a systematic study of the effects of

network structure and nonaffinity on N1 has been lacking.

Here, we investigate the behavior of the various normal stress components in ather-

mal subisostatic fiber networks near the strain-stiffening transition, using numerical

models of disordered semiflexible fiber networks in two and three dimensions. We

show that the general scaling of the normal stresses with shear strain below, near,

and above the rigidity transition remains consistent irrespective of the underlying

network structure. However, we demonstrate that such networks can exhibit anoma-

lous behavior in N1 that is highly sensitive to the network structure, and that this

anomaly is most pronounced near the point of marginal stability as a function of

strain, i.e., along the phase boundary in Fig. 3.1b that corresponds to nonlinear

strain-stiffening. This anomaly at the stiffening transition results from the formation

of a highly heterogeneous, anisotropic, system-spanning network of strong tensile force

chains, whose spatial structure and force distribution determines the relative values of

each normal stress component and thus N1. Our results suggest that any underlying

anisotropy in the network structure can result in anomalous behavior in N1 that is

maximized at the critical strain, suggesting that the sign and magnitude of N1 can,

in principle, be tuned by selectively modifying the network structure. Interestingly,

our results suggest that in the limit of very large and nearly isotropic systems, such

as large off-lattice network models or experimental gels, the Lodge-Meissner relation

should be satisfied at any strain, in spite of the significant nonaffine deformations and
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heterogeneous force network associated with the critical strain.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: (A) Sample of a reconstituted collagen network exhibiting clear connective and
geometric disorder, adapted from Ref. [50]. We investigate the mechanics of bond-diluted
athermal semiflexible fiber networks including (b) phantom 2D triangular networks with added
positional disorder, (c) phantom FCC lattice-based networks, (d) random fiber (Mikado) networks,
(e) 2D bidisperse disk packing-derived networks and (f) 3D bidisperse sphere packing-derived
networks.

3.3 Numerical models

We consider discrete models of semiflexible polymer networks in 2 and 3 dimensions,

including both lattice-based and off-lattice network structures, with filament-bending

(i.e. freely hinging crosslinks between fibers) and bond-bending interactions. For

lattice-based models, we consider two-dimensional (triangular) and three-dimensional

(face-centered cubic) lattice-based networks, and for off-lattice networks we consider

two-dimensional Mikado and bidisperse disk packing-derived networks as well as three-

dimensional bidisperse sphere packing-derived networks. Examples of these are shown
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in Figure 3.2.

We construct disordered lattice-based networks in 2D beginning with fibers arranged

on a periodic triangular lattice with lattice spacing l0 = 1 and sides of W lattice units

[66, 113], which we then phantomize by disconnecting one of three intersecting fibers at

each node, in order to reduce the average network connectivity 〈z〉 to 4 [73]. Prior work

has shown that, in 2D networks, the buckling of long, straight fibers leads to unrealistic

mechanical effects including a dip in the differential shear modulus K = ∂σxz/∂γ [97].

We avoid this by introducing geometric distortion to the unstrained lattice network

by moving each node a random distance in the range [0, δmax] in a random direction,

with δmax ≤ 0.5 in order to avoid overlapping nodes [44, 51, 114], and subsequently

redefining the rest lengths lij,0 between pairs of nodes and rest angles θijk,0 between

connected triplets of nodes so that the geometrically disordered network exhibits

zero stress in the unstrained state. In order to avoid system-spanning (or nearly

system-spanning) fibers, which introduce unrealistic contributions to the macroscopic

mechanics [48, 95], we remove every qth bond along each fiber, beginning with a

randomly chosen bond, prior to dilution. For phantomized triangular networks, we

use W = 120 and q = 20. Similarly, the process for generating 3D face-centered cubic

(FCC) lattice-based networks (as shown in Figure 3.2c) begins with fibers arranged on

a periodic FCC lattice [65] with sides of W lattice units with lattice spacing l0 = 1. We

phantomize these as well [115], yielding an average z = 4, and cut a single randomly

chosen bond on each fiber prior to dilution. We use 3D FCC networks with W = 25.

Mikado networks are constructed by placing straight segments of length L with

random positions and orientations into a 2D periodic box of side length W , adding

crosslinks at the intersections between segments [40, 116]. Fibers are deposited

randomly until the desired average crosslink density L/lc is reached, where lc is the

average bond length. Even in the infinite crosslink density limit, Mikado networks

yield z < 4. We generate networks with W = 10L and L/lc ≈ 12, yielding an initial
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connectivity of z ≈ 3.6 prior to dilution.

We prepare 2D packing-derived (PD) networks by first randomly placing N = W 2

radially bidisperse disks with harmonic repulsive interactions within a periodic square

unit cell of side length W , where half of the disks are assigned a radius r = r0 and

half r = φr0, with φ = 1.4 chosen to avoid long-range order [82]. We incrementally

increase r0 from 0 until the system jams, exhibiting a finite bulk modulus. From this

disordered packing, we generate a contact network by connecting the centers of the

overlapping disks (excluding rattlers) with springs at their rest lengths [47, 81, 117].

The same procedure is followed in 3D, using N = W 3 radially bidisperse harmonic

repulsive spheres, also with φ = 1.4, in a periodic cubic unit cell of side length W .

With sufficiently large systems, this procedure generates contact networks with z ≈ 2d,

where d is the dimensionality. Unless otherwise stated, we study 2D packing-derived

networks with W = 100 (N = 10000 nodes) and 3D packing-derived networks with

W = 20 (N = 8000 nodes).

After generating the underlying network structure, we repeatedly remove randomly

chosen bonds and any consequent dangling ends until the network reaches the desired

average network connectivity z. We model the lattice-based and Mikado networks as

filamentous networks with freely-hinging crosslinks, in which bending interactions are

accounted for only along each fiber [40, 50], whereas the packing-derived networks are

modeled instead as bond-bending networks [118] with bending interactions between all

pairs of nearest-neighbor bonds. Given that the precise mechanics of the connections

between fibers in real collagen and fibrin networks, which can include both branching

points and crosslinks, are not well characterized, using two different crosslink models

enables us to study whether the behavior of the normal stresses is independent of the

detailed form of the bending interactions. Prior work has shown that these models

exhibit similar linear mechanics [48, 119] and strain-driven critical behavior [50–52].

Energetically, we treat individual bonds as Hookean springs with stretching modulus

39



Chapter 3. Normal stress anisotropy

µ and pairs of bending-associated bonds with bending modulus κ. The Hamiltonian

H of the full network is

H =
1

V

µ
2

∑
〈ij〉

(lij − lij,0)2

lij,0
+
κ

2

∑
〈ijk〉

(θijk − θijk,0)2

lijk,0

 , (3.1)

in which the sums are taken over pairs 〈ij〉 and triplets 〈ijk〉 of connected nodes,

and lijk,0 = (lij + ljk)/2. For networks with freely hinging crosslinks, the second

sum is taken only for adjacent pairs of bonds along fibers. Here, V = v0W
d, where

v0 =
√

3/2 for triangular lattice-based networks, v0 =
√

2/2 for FCC lattice-based

networks, v0 = 1 otherwise, and d is the dimensionality. As in prior work, we set µ = 1

and define a dimensionless bending rigidity κ̃ = κ/µl2c . Bond-diluted network models

such as these have been shown to quite effectively describe the shear elasticity of

reconstituted collagen networks [50, 98], which have a typical average value of z ≈ 3.4

[120].

We perform simulations of networks under simple shear by incrementally increasing

the shear strain γ from 10−2 to 1 in exponentially spaced steps, using generalized

Lees-Edwards periodic boundary conditions [85]. For simplicity of notation when

comparing 2D and 3D simulations, we denote x and z the directions of shear and

gradient, respectively, in both cases. At each strain value, the network energy is

minimized using the FIRE algorithm [83], and each component of the stress tensor σ

is computed as

σαβ =
1

2V

∑
〈ij〉

fij,αuij,β (3.2)

in which uij = uj−ui is the vector between nodes i and j and fij is the force acting on

node i due to node j [86]. To symmetrize the normal stresses in the linear regime, we

average the response of each network sample under positive and negative shear strain.

Unless otherwise stated, the reported stress is averaged over at least 10 samples.

For comparison, we also consider the limit of an isotropic medium composed of
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3.4. Normal stresses and strain-stiffening

filaments of length l0 = 1 with uniformly distributed initial orientations, which are

assumed to deform affinely under simple shear. We compute the resulting stress

tensor as a function of strain for this system with two complementary force extension

relations: simple linear Hookean springs, which support both compression and tension,

and “rope”-like springs that support only tension (see Appendix, section 3.8). For

the remainder of the paper we refer to the first isotropic model as the spring model

and the second as the rope model. Both analytical models satisfy the Lodge-Meissner

relation under any applied strain.

3.4 Normal stresses and strain-stiffening

Without bending interactions, spring networks exhibit a finite linear shear modulus

G = limγ→0K > 0 only when their connectivity z, defined as the average number of

connections at each node, reaches a critical isostatic connectivity zc [48]. While the

precise value of zc is sensitive to the heterogeneity of the network structure, typical

values are close to the constraint-counting value ziso = 2d introduced by Maxwell

[46]. Under shear strain, spring networks that are subisostatic, with z < zc, develop

finite K ≈ µ at a critical strain γc that depends on the network’s connectivity and

geometry, with γc → 0 as z → zc from below. At the critical strain, such networks

develop a system-spanning branched network of primarily tensile force chains, oriented

predominantly along the principal extension axis, in order to support finite stress.

Associated with the development of this force chain network are characteristic signatures

of criticality including diverging nonaffine fluctuations [50]. In networks with finite κ̃,

K is finite and proportional to κ̃ below the critical strain, and subisostatic semiflexible

polymer networks therefore undergo a transition from a bending-dominated regime to

a stretching-dominated regime at the critical strain [50]. In Fig. 3.3, we show K vs. γ

for several values of z, demonstrating that γc increases with decreasing z. For constant
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z, γc is very weakly dependent on κ̃ in the limit of κ̃→ 0, and the networks exhibit a

clear transition from a bending dominated regime (K ∝ κ̃) for γ < γc to a stretching

dominated regime (K ∝ µ) for γ > γc (Fig. 3.3a inset). This behavior is also clear

from the proportion of the total energy arising from bending interactions, Hb/H, as

we show in Fig. 3.3c: as κ̃ is decreased, the transition from the bending-dominated

to stretching-dominated regime at γc sharpens. One can map the critical strain as

a function of z to yield a phase diagram for the mechanical behavior of subisostatic

networks as a function of strain and connectivity, as shown schematically in Fig 3.3b

[50]. The details of the phase boundary depends on the underlying network geometry.
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Figure 3.3: (a) Differential shear modulus K vs. strain γ for phantomized triangular networks
with κ̃ = 10−6, W = 120, δmax = 0.4, and varying connectivity z. The vertical dotted line
for each z value indicates the critical strain γc, determined as the strain corresponding to the
onset of finite K in the low-κ̃ limit. These curves illustrate that the critical strain increases
with decreasing z. The solid black line shows the computed K for the affine isotropic network
model with line density ρ = 2

√
3. Inset: K vs. γ for constant z = 3.6 and varying κ̃. (b)

Schematic mechanical phase diagram indicating the increase in γc with decreasing z below
zc = 2d. (c) For the same networks, the ratio of bending energy Hb to total energy H illustrates
the bending-to-stretching transition that occurs at the critical strain and (inset) sharpens with
decreasing κ̃. Colors in both the main panel and inset correspond to those in panel (a). Lines
between points are intended to serve as guides to the eye.

The normal stress components σii (where i = x, z) both exhibit the same bending-

dominated to stretching-dominated transition at the z-dependent critical strain, with
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3.4. Normal stresses and strain-stiffening

σii ∝ κ̃ for γ < γc and σii ∝ µ for γ > γc, as shown in Fig. 3.4a for phantom

triangular networks. As we show in Fig. 3.5, we observe essentially the same behavior

in all subisostatic network models studied here, supporting the idea that the details

of the network structure [50] and bending energy type [51] have only minor effects

on the general strain-stiffening behavior of semiflexible fiber networks. Instead, the

governing variables are z and γ. In Appendix, section 3.8, we show that phantomized

triangular networks exhibit the same mechanical behavior with freely-hinging crosslinks

as with bond-bending interactions, with the only difference being that bond-bending

interactions leads to a higher apparent κ due to the additional angle constrains. We

also observe that the ratio of the axial normal stress component σzz to the shear stress

σxz becomes maximal, and typically greater than 1, at γc, as we show in Fig. 3.4b.

This peak reflects the sharp transition from the bending-dominated regime, in which

σzz ∝ γ2 and σxz ∝ γ for small γ, yielding σzz/σxz ∝ γ, to the stretching-dominated

regime, in which σxz grows as a power-law with respect to ∆γ and rapidly begins

to dominate σzz. Preliminary observations of this phenomenon were made in prior

work using Mikado networks [94] and in experiments on fibrin [92]. We observe, in

all network models discussed here, that the peak follows the critical strain as z is

varied and grows to a z-dependent asymptotic value as κ̃ decreases. A maximum in

this ratio actually does occur in the affine isotropic spring network limit due to the

gradual reorientation of fibers under increasing shear strain, but the maximal value

is smaller (∼ 0.4) and the peak strain much larger (γ ∼ 1) than we observe for our

semiflexible network models. The isotropic rope network model, in contrast, exhibits

a maximum with σzz/σxz > 1 at zero strain. In semiflexible networks with small κ̃, it

appears that the critical strain marks a transition from the linear, bending-dominated

regime in which σzz/σxz ∝ γ to a rope-like regime. This results from the fact that,

at and above the critical strain, tension forces vastly outweigh compressional forces

in networks with low κ̃. In Fig. 3.4b, we show that systems with low κ̃ exhibit a
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ratio σzz/σxz which, above γc, is quite close to the rope network limit, whereas for

higher κ̃ networks the ratio approaches the spring network limit. The latter trend is

expected, as increasing κ̃ increases the degree to which the network’s fibers can support

compression. Interestingly, we observe that, near the critical strain, σzz/σxz exceeds

even the rope values predicted for the affine isotropic rope network limit, possibly due

to the highly heterogeneous nature of the stress-bearing network at the critical strain.

Nevertheless, it is apparent that a large ratio of the axial normal stress to the shear

stress is a signature of the development of a rope-like stress-bearing structure at the

critical strain. This is further supported by prior experimental evidence that fibrin

networks with stiffer filaments exhibit a smaller peak in σzz/σxz than more flexible

ones at the critical strain [92].
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3.5 Stress anisotropy

For typical isotropic elastic materials, the first normal stress difference N1 =

σxx − σzz is positive, and for affinely deforming isotropic elastic materials like rubber

it is typically well approximated by the Lodge-Meissner relation N1 = σxzγ. Negative

values of N1 are unusual, but have been observed in certain materials including shear-

thickening suspensions [111]. However, negative N1 has not to date been observed in

a real elastic solid. While the normal stresses we observe for all networks (Figs. 3.4

45



Chapter 3. Normal stress anisotropy

and 3.5) are similar in magnitude at and below the critical strain, we observe that the

behavior of the first normal stress difference N1 depends strongly on the underlying

network structure.

Under applied strain γ, the periodic images of each node in the network transform

affinely according to the simple shear deformation gradient Λ(γ). This deformation

gradient results in maximal elongation along its principal extension axis with orientation

θP , with maximal compression along the perpendicular axis, as shown schematically

in Fig. 3.6c for a small strain. We determine the principal strains and principal strain

axes, which rotate with applied strain, as a function of γ in Appendix, section 3.8. For

γ = 0, the principal extension axis is oriented θP = π/4 radians above the x-axis in the

x-z plane. For isotropic and affinely deforming networks with only axial forces, such as

the rope and spring model, the principal stress axes exactly follow the principal strain

axes under any applied γ, such that the Lodge-Meissner relation is always satisfied.

That the principal stress axes follow the principal strain axes is not guaranteed in

disordered networks, as they deform nonaffinely and are not perfectly isotropic.

In particular, lattice-based networks such as triangular and FCC models exhibit

significant angular anisotropy; in the unstrained state, their bonds lie only along

vectors corresponding to the lattice directions, and imposed local geometric disorder

does little to mitigate this long-range anisotropy. We can explore the effects of this

anisotropy by applying an initial rotation of φ radians, relative to the x-axis in the

x-z plane, to the lattice prior to applying shear strain. Arbitrarily, we define the

unrotated (φ = 0) phantom triangular lattice as having bonds initially oriented at

angles θb,0 ∈ [0, π/3, 2π/3] relative to the x-axis. Even with significant random local

geometric distortion δmax = 0.4, the fibers remain on average oriented along these

initial lattice vectors. In general, tensile force chains develop in randomly diluted

spring networks at the critical strain and tend to be oriented along the principal

extension axis. As bonds in a phantom triangular network do not have a uniform
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initial angular distribution and are instead oriented primarily along the initial lattice

bond orientations for a given φ, the tensile force chains develop along the (slightly

rotated) initial lattice bond orientation that is most stretched at γc, i.e. whichever is

closest to the principal extension axis.

For initially unrotated (φ = 0) triangular lattice networks, the dominant tensile

force chains develop primarily along the bonds that are initially oriented along the

θb,0 = π/3 direction, as shown in Fig. 3.6d, with softer branches oriented along the

other directions. As a result, the maximum principal stress is oriented close to the

θb,0 = π/3 direction, not parallel to the principal extension axis. The initial lattice

orientation determines which of the (rotated) initial lattice bond orientation the tensile

force chains propagate along at γc, thus determining the relative orientation of the

maximal principal stress axis to the principal extension axis. When the initial lattice is

rotated by φ = π/6, such that the initial undistorted lattice bond vectors are oriented

along θb,0 ∈ [π/6, π/2, 5π/6], the dominant force chains instead propagate along the

rotated lattice vector corresponding to θb,0 = π/6, as shown in Fig. 3.6e.

But how does this affect N1? In the κ̃ = 0 limit, in which forces only occur

parallel to bonds, the value of N1 is entirely determined by the individual bond

orientations, with N1 ∝
∑

b fblb cos(2θb) where fb is the tension, lb is the length, and

θb ∈ [−π/4, 3π/4] is the angle of bond b relative to the x-axis in the x-z plane. This

range for θb is convenient, as bonds under tension with θb > π/4 exhibit negative N1,

whereas bonds under tension with θb < π/4 exhibit positive N1. A similar expression

was used in Ref. [112] to describe relative contributions to N1 based on force networks

in non-Brownian suspensions. With finite κ̃, forces also occur perpendicular to bonds,

leading to a more complicated dependence of N1 on the network configuration. Since

the tensile force networks dominate for relatively low-κ̃ networks at and above the

critical strain, it is reasonable to estimate N1 for such networks in this regime only in

terms of stretching forces, i.e. as a simple function of the bond orientations.
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In our disordered network models, which deform nonaffinely and always possess

some anisotropy, normalizing the measured value of N1 by the Lodge-Meissner value

(σxzγ) yields a quantitative measure of the degree to which the network behaves as

an affinely deforming isotropic material. Since σxzγ is always positive, this quantity

also indicates when N1 is negative. For the remainder of this work, we report the

normalized quantity N1/(σxzγ). For unrotated (φ = 0) phantom triangular lattice

networks, the dominant force chains at γc are tensile and oriented with θ > π/4 for

small γc, predicting that N1 will be negative in the limit of low κ̃. With increasing

γc, i.e. decreasing z, the force chains should develop with orientations closer to the

principal strain axis, so decreasing z should bring N1 closer to the Lodge-Meissner

value. In Fig. 3.7a, we plot N1/(σxzγ) as a function of strain for phantom triangular

lattice-based networks with φ = 0, small κ̃, and varying z, demonstrating that these

exhibit a negative peak in N1 at the z-dependent critical strain, corresponding to the

highly anisotropic force chains with θ > π/4 shown in Fig. 3.6d. As predicted, the

magnitude of this peak decreases as z decreases and γc increases, as the applied strain

causes the principal stress axis to approach the principal strain axis. Nevertheless,

even relatively high γc values yield an anomalous downward peak in γc, indicating

that these networks become maximally anisotropic at the critical strain. At large

strains, of order 1 or greater, N1 ≈ σxzγ for all networks, as the deformation becomes

increasingly affine above the critical strain and the principal stress axis approaches

the principal strain axis.

We further demonstrate in Fig. 3.7b that the peak is related to the critical

strain-stiffening transition by showing that, in unrotated phantom triangular networks

with constant z and varying κ̃, the peak becomes sharper in the κ̃→ 0 limit. With

increasing κ̃, the deformation becomes increasingly affine, so the peak disappears

and N1 grows increasingly positive. With κ̃→∞, the disordered network’s response

approaches that of the corresponding affinely deforming undiluted triangular lattice,
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which actually yields N1/(σxzγ) > 1 for φ = 0 due to its inherent angular anisotropy.

Given the rotational symmetry of the triangular lattice for rotations of nπ/3, we expect

that, beyond small differences due to random dilution, any angular anisotropy-related

mechanical behavior of the lattice should be similar for initial rotations φ = nπ/6 where

n is even, whereas the opposite behavior should occur for odd n. For intermediate

angles, we should observe a transition between these two cases. In Fig. 3.6a, we show

the response for the full undiluted triangular lattice, as well as that of diluted phantom

triangular networks with varying κ̃, with φ = 0, in comparison to the corresponding

curves for the “opposite” initial orientation φ = π/6. We see that, for the full and

diluted networks, N1/(σxzγ) essentially flips about the Lodge-Meissner value of 1 when

the initial lattice is rotated by π/6. That the peak for the low-κ̃ case flips in sign is

supportive of the idea that the orientation of the dominant force chains, shown in

Fig. 3.6d-e, controls the sign and magnitude of N1 relative to σxzγ. In Fig. 3.6b, we

show N1/(σxzγ) for the full range of φ in the low-κ̃ case, demonstrating the smooth

transition between the aforementioned extremes for rotations of nπ/6. If an angular

average is taken, the Lodge-Meissner relation is satisfied. It is interesting to note that,

even for the phantom diluted triangular lattice, certain intermediate rotations should

approximately satisfy the Lodge-Meissner relation at the critical strain as long as the

dominant force chains, and thus the principal stress axis, are parallel to the principal

extension axis. Phantom FCC networks, which also exhibit angular anisotropy, show

qualitatively similar behavior, with a downward peak in N1/(σxzγ) for φ = 0.

For off-lattice networks with no long-range order, including Mikado and 2D/3D

PD networks, the force chains that develop at the critical strain still occur with a

directional bias towards the principal extension axis, but the lack of an underlying

lattice structure means that they exhibit no orientational bias above or below the

principal extension axis. Nevertheless, the highly heterogeneous and branched nature

of these networks means that even for relatively large system sizes, some samples do
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exhibit deviation from the Lodge-Meissner relation at the critical strain. In Fig. 3.8a,

we show that N1/(σxzγ) exhibits anomalous behavior with a peak at the critical strain

for certain samples for small (W = 50, N = 2500 nodes) 2D packing-derived networks,

indicating that this effect can occur in off-lattice networks. Averaging over an ensemble

of initial network structures, the Lodge-Meissner relation is approximately satisfied.

We show in Fig. 3.8b, that larger networks (W = 140, N = 19600 nodes) still exhibit

anomalous peaks at the critical strain, but that these are typically lower in magnitude

than those observed in smaller systems. The deviation from the LM relation in the

bending-dominated regime appears to decrease with increasing system size as well. For

a given network, the dominant force chains arise along the network’s “shortest paths“

[107] consisting of connected bonds oriented close to the principal extension axis at a

given strain, which have some excess length for γ < γc. The critical strain corresponds

to the strain at which, in the κ̃ = 0 limit, one or more of these shortest paths can no

longer rearrange without the stretching of their constituent bonds. Thus, the structure

of the force chain network and the resulting value of N1/(σxzγ), is determined at the

critical strain by the orientations of these (initially randomly oriented) paths.

While we do observe that individual samples typically closely approximate the

Lodge-Meissner relation, it is unsurprising that finite-sized systems occasionally show

anomalous behavior at the critical strain, as a consequence of the finite chance of

some angular bias of the force chain network away from the principal extension axis.

In the thermodynamic limit, the Lodge-Meissner relation should be satisfied even

at the critical strain for individual networks, as increasing the system size should

increase the likelihood that the system can “find” shortest paths close to the principal

strain axis. In other words, deviation from the Lodge-Meissner relation requires a

preferential orientation of the principal stress axis above (or below) the principal

extension axis, which can only occur due to some underlying bond orientation bias in

the initial network structure. For off-lattice models like packing-derived networks with
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no long-ranged structural anisotropy, such a preferential orientation is not possible in

the limit of large system sizes, so the Lodge-Meissner relation is satisfied. We observe

the same behavior for 3D PD networks and Mikado networks as in 2D PD networks.

It is worth noting that in off-lattice networks, like in the lattice-based networks, one

can cause N1/(σxzγ) to flip about the Lodge-Meissner value by appropriately rotating

the initial structure, and averaging over all possible initial orientations removes any

deviation from Lodge-Meissner.

To emphasize the dependence of the value of N1 on the highly heterogeneous

force chain network structure at the critical strain, we show examples of force chains

for Mikado, 2D PD, and unrotated phantom triangular networks with κ̃ = 0 at

the critical strain in Fig. 3.9. Mikado and PD networks show randomly branched

force chains with a directional bias towards the principal extension axis, whereas the

unrotated phantom triangular network shows the expected force chains oriented above

the principal extension axis (and above θb = π/4). Additionally, we compute the

distribution of contributions to N1 due to bonds oriented with angle θ = θb − π/4,

normalized by σxzγ, for each network structure as a function of ∆γ = γ − γc, also

shown in Fig. 3.9. Integrating these distributions over θ yields N1/(σxzγ) as a function

of strain. At large strains, the networks all show very similar behavior, with primarily

positive contributions to N1 coming from primarily tensile bonds oriented close to the

principal extension axis, below θb = π/4, and with the total contribution satisfying

the Lodge-Meissner relation.

At the critical strain, however, the value of N1/(σxzγ) is determined by the balance

of very large positive and negative contributions from bonds oriented above and below

θb = π/4. For the Mikado and PD networks shown, these positive and negative

contributions are similar in magnitude at γc, but for the unrotated phantom triangular

lattice, the negative contribution at γc significantly outweighs the positive contribution,

yielding the observed negative peak in N1/(σxzγ) vs. γ. The signficant heterogeneity
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of the force chain network is evident in noisy nature of these distributions at γc. We

additionally plot, as insets in Fig. 3.9, the corresponding bond force distributions

P (f/〈f〉) at γc, where f > 0 corresponds to tension and the average 〈f〉 is taken only

over bonds under tension. Similar to observations of compressive force distributions

in granular packings [121–123], frictional forces in shear-thickening suspensions [104],

and tensile forces in polymer crazes [124], we observe that the large (f > 〈f〉) tensile

forces in our networks are, at the point of marginal stability i.e. γc, approximately

exponentially distributed. To emphasize this, we show that the large forces can be

approximated by the distribution P (f/〈f〉) ∝ exp(−β(f/〈f〉 − 1)). We find β = 0.5

appears to reasonably describe the distributions for the networks shown here. We

also note that the compressive forces appear to exhibit an exponential tail as well,

although they decay faster than the tensile forces. In a network of rope-like bonds or

bucklable individual bonds with κ̃ = 0, there would be no compressive forces. These

distributions emphasize that tensile forces dominate at the critical strain.
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Figure 3.6: (a) N1 normalized by the Lodge-Meissner relation N1 = σxzγ for undiluted triangular
lattices (dashed lines) and phantomized triangular networks with z = 3.6, and W = 120, and
varying κ̃, in which the lattice is initially rotated by angle φ = 0 and φ = π/6. In the subisostatic
lattice case, the peak at the critical strain γc changes sign when the lattice is rotated by φ = nπ/6
with odd n, as shown in (b) for κ̃ = 10−6 over the full range of θ. In lattice-based networks
such as these with long fibers along specific lattice vectors, force chains preferentially develop at
the critical strain along whichever lattice vector is closest to the principal extension direction for
a given applied strain γ (see Appendix, section 3.8). (c) The principal extension axis for the
simple shear deformation gradient Λ(γ = 0.1) is shown in red, with the (perpendicular) principal
compression axis shown in blue. In black, we show the corresponding strain ellipsoid, projected
onto the x-z plane. d) The angular orientation of the dominant force chains relative to θ = π/4
determines the sign of N1. For unrotated networks (φ = 0) with the same parameters as in (b),
the most elongated fibers at the critical strain γc ≈ 0.1 are oriented with θb > π/4, resulting
in negative N1. (e) When these networks are rotated initially by φ = π/6, the most elongated
fibers at the critical strain are instead oriented with θb < π/4, resulting in positive N1.
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Figure 3.7: First normal stress difference N1 ≡ σxx − σzz normalized by the Lodge-Meissner
relation (N1 = σxzγ) in unrotated 2D distorted phantomized triangular networks (φ = 0,
δmax = 0.4) as a function of γ for (a) κ̃ = 10−6 and varied 〈z〉 and (b) 〈z〉 = 3.6 and varied κ̃,
with the Lodge-Meissner result (N1/(σxzγ) = 1) shown as a thick solid line. Deviation from the
Lodge-Meissner relation increases with 〈z〉, and the ratio exhibits a downward peak and maximal
anomaly at the critical strain γc, which grows with decreasing κ̃ and shifts with γc for varying 〈z〉.
At high strain, ratios for all networks (irrespective of 〈z〉 and κ̃) converge to the affine result.
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Figure 3.8: Off-lattice networks show signatures of anisotropy in N1 at the critical strain,
but these deviations appear to average out in the limit of large system sizes or when averaged
over many samples. For 2D packing-derived networks with z = 3.3 and κ̃ = 10−6, we observe
a decrease in the magnitude of the deviations of N1 from the Lodge-Meissner relation with
increasing system size.
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Figure 3.9: At the critical strain in the limit of κ̃ = 0, a system-spanning network of force
chains develops that enables the network to bear finite stress. The angular orientation of this
force network’s constitutent bonds determines the sign of N1. Here, we show representative
force chains for central force (κ̃ = 0) networks at the critical strain for (a) a Mikado network
with z = 3.3, (b) a packing-derived network with W = 100 and z = 3.4, and (e) a phantomized
triangular network with z = 3.6. We also show the corresponding distributions of N1(θ), the
contribution to N1 from bonds oriented with a given angle θ relative to π/4, normalized by σxzγ
for varying ∆γ = γ − γc. The integral of N1(θ) over θ ∈ [−π/2, π/2] yields N1. Hence, the
relative areas of the positive and negative portions of the curve for a given γ indicates the sign
of N1. The dominant contributions to N1 are from bonds under tension. Insets: At the critical
strain, the probability distribution of bond tension f , where fij = µ(lij/lij,0 − 1), normalized by
the mean tensile force 〈f〉 = mean(f(f > 0)), exhibits an exponential tail. The black solid lines
corresponds to P (f/〈f〉) ∝ exp(−β(f/〈f〉 − 1)), with β = 0.5.
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3.6 Summary and discussion

In this work, we have shown the general scaling behavior of the normal stresses in

the vicinity of the strain-driven stiffening transition for athermal semiflexible polymer

networks, demonstrating that both the axial component σzz and azimuthal component

σxx are quadratic in strain and proportional to the polymer bending rigidity κ̃ for γ < γc

but increase dramatically at the critical strain, such that both become proportional to

the polymer stretching modulus µ for γ > γc. Additionally, we note that the critical

strain coincides with the development of a heterogeneous network of primarily tensile

force chains, similar to the compressive force chains observed in granular packings

and frictional force chains observed in shear thickening suspensions. Along with the

development of this force chain network, we observe a peak in the ratio of the axial

normal stress to the shear stress (previously observed in prior work [92, 94]), which

we show is a signature of the critical strain that becomes sharper with decreasing

κ̃. For networks with low κ̃, we observe that this ratio appears to behave like the

corresponding ratio for the affine rope network model, highlighting the primarily

tensile nature of the stress-bearing force chain network. These observations possibly

explain prior evidence that more flexible fibrin networks exhibit a sharper peak in

σzz/σxz than stiffer fibrin networks [92].

Further, we observe that the highly anisotropic and heterogeneous structure of the

force chain network that develops at the critical strain results in deviation of the first

normal stress difference N1 = σxx − σzz from the Lodge-Meissner relation N1 = σxzγ,

particularly for networks with significant angular anisotropy (i.e. lattice-based models).

This deviation from the Lodge-Meissner relation results from a difference in orientation

of the principal stress axis from the principal extension axis, which in lattice-based

models results from force chains at γc developing primarily along whichever of the

transformed initial lattice vector directions is closest to the principal strain axis. For

lattice orientations in which the principal stress and strain axes do not align, we
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observe a peak in N1/(σxzγ) at the critical strain, consistent with the observation

that these force chains are most anisotropic at the critical strain, and we show that

appropriately rotating the lattice changes the sign of the peak. These results suggest

that one can control the sign and magnitude of N1 by modifying the network structure,

similar to recent work showing that networks can be made auxetic by selectively

pruning bonds [125]. We observe that similar but typically smaller peaks in N1/(σxzγ)

at γc can also occur in off-lattice models, which lack long-range order and develop

more random, branched force chain networks than lattice-based networks. While the

force chain networks in off-lattice models are, on average, oriented along the principal

strain axis, deviation from Lodge-Meissner is observed for finite systems at the critical

strain and results from small imbalances between contributions to N1 from bonds

oriented on either side of the principal extension axis. Our results suggest that, in the

thermodynamic limit, semiflexible networks with no long-range angular anisotropy

(e.g. off-lattice models with W →∞) should satisfy the Lodge-Meissner relation, even

at the critical strain.

This suggests that any observed deviation from the Lodge-Meissner relation in

experimental measurements could serve as an indication of anisotropy in the network

structure. For relatively isotropic biopolymer gels in which the sample size is much

larger than the mesh size, we expect N1 = σxzγ, meaning that N1, i.e. the measured

normal stress on short timescales, can be expected to be positive. This is in agreement

with experimental measurements of N1 measured for fibrin gels at high frequencies

[61]. We note that prior dynamic studies of spring networks have shown that viscous

damping reduces nonaffinity at high frequencies [126, 127], which we expect to further

reduce deviation from the Lodge-Meissner relation in this limit.

Finally, we report force probability distributions for networks at the critical strain

in the limit of κ̃ = 0, showing that the dominant forces at γc are tensile, with additional

evidence of an exponential tail in the large force probability distribution. Similar force
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probability distributions have been measured for other fragile or marginally stable

systems, including compressive force networks in granular packings at the jamming

point [121–123], transient frictional force networks in sheared granular suspensions

[104], and force networks in polymer crazes [124]. Future work will be necessary to

characterize these force networks and their implications in the strain-driven stiffening

transition.
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3.8 Appendix

3.8.1 Affinely deforming isotropic network models

Consider a filament segment with initial orientation n̂, undergoing deformation

described by the tensor Λ(γ). The deformation changes the filament’s length and

orientation, resulting in a tension τ directed along its new orientation. Treating

the filament as a linear elastic element with stretching modulus µ and initial length

l0 = 1, the tension vector is τ = τΛn̂/ |Λn̂|. For the spring model, we utilize a linear

Hookean force-extension relation in which the filaments support both tension and

compression: τ = τs where τs = µ(|Λn̂| − 1). For the rope model, we instead use a

one-sided force-extension relation that is only finite under tension: τ = τr, with

τr =


µ(|Λn̂| − 1) (|Λn̂| > 1)

0 (|Λn̂| ≤ 1)

. (3.3)
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Taking the average, over all initial filament orientations, of the product of the i

component of the tension, τΛilnl/ |Λn̂|, and the line density of filaments crossing the

j plane after the deformation, ρ
detΛ

Λjknk, yields the stress tensor [19, 64],

σij =
ρ

detΛ

〈
τ

ΛilnlΛjknk
|Λn̂|

〉
. (3.4)

Since we consider only volume-conserving simple shear, detΛ = 1. Thus, for filaments

in 3D with initial polar angle θ and azimuthal angle ϕ, the stress tensor is

σij =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

ΛilnlΛjknk
|Λn̂|

]
, (3.5)

in which the deformation tensor for simple shear in 3D is

Λ(γ) =


1 0 γ

0 1 0

0 0 1

 (3.6)

and the transformed orientation vector is

Λn̂ =


sin θ cosϕ+ γ cos θ

sin θ sinϕ

cos θ

 . (3.7)

We compute the xz, xx, and zz components of the stress tensor for the 3D case as

follows:

σxz =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

(sin θ cosϕ+ γ cos θ) cos θ

|Λn̂|

]
(3.8)

σxx =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

(sin θ cosϕ+ γ cos θ)2

|Λn̂|

]
(3.9)

σzz =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ

[
τ

cos2 θ

|Λn̂|

]
(3.10)
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The integrals are taken over the ranges 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π. To compare with

our results for the 3D FCC network, we use µ = 1 and initial line density ρ = 12√
2
,

corresponding to the fully-connected FCC lattice with l0 = 1 [97].

We repeat the same process for the 2D case, in which the deformation tensor for

simple shear is

Λ(γ) =

1 γ

0 1

 (3.11)

and the transformed orientation vector is

Λn̂ =

cos θ + γ sin θ

sin θ

 . (3.12)

The resulting components of the 2D stress tensor are calculated as follows:

σxz =
ρ

2π

∫
θ

dθ

[
τ

(cos θ + γ sin θ) sin θ

|Λn̂|

]
(3.13)

σxx =
ρ

2π

∫
θ

dθ

[
τ

(cos θ + γ sin θ)2

|Λn̂|

]
(3.14)

σzz =
ρ

2π

∫
θ

dθ

[
τ

sin2 θ

|Λn̂|

]
(3.15)

Here, the integrals are taken over the range 0 ≤ θ ≤ 2π.

3.8.2 Principal strain axes for simple shear

For simple shear with deformation gradient tensor

Λ(γ) =


1 0 γ

0 1 0

0 0 1

 , (3.16)
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we can decompose Λ into a combination of a pure stretch U and a rigid body

rotation R, satisfying Λ = RU . From the right Cauchy-Green tensorC = U 2 = ΛTΛ,

we determine

U =
1√

4 + γ2


2 0 γ

0
√

4 + γ2 0

γ 0 2 + γ2

 . (3.17)

The eigenvalues of U are

λ1 =
γ +

√
γ2 + 4

2
, λ2 =

−γ +
√
γ2 + 4

2
, λ3 = 1 (3.18)

with corresponding eigenvectors

v1 =

(
1

2

(
−γ +

√
4 + γ2

)
, 0, 1

)

v2 =

(
1

2

(
−γ −

√
4 + γ2

)
, 0, 1

)
v3 = (0, 1, 0)

λ1 and λ2 correspond to the elongation l/l0 along the axes of maximum extension and

compression, respectively.

The rotation matrix R is determined as R = ΛU−1,

R =
1√

4 + γ2


2 0 γ

0
√

4 + γ2 0

−γ 0 2

 (3.19)

The maximum stretch direction then corresponds to v′1 = Rv1. In the limit of

small strains, v′1 is oriented at θ = π/4 above the x-axis, in the x-z plane.
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3.8.3 Bending interaction models

Prior work has shown that network models with bond-bending interactions (angle

constraints between all nearest-neighbor bonds) exhibit the same strain-driven critical

behavior as networks with freely-hinging crosslinks (angle constraints between only

initially collinear nearest-neighbor bonds) [50, 51]. To emphasize that the details of

the bending interactions do not influence our conclusions with regard to the normal

stresses, we consider the mechanics of phantomized triangular networks with z = 3.4

and either freely-hinging crosslinks (bending along initially collinear fibers) or bond-

bending interactions, both with κ̃ = 10−5. In Fig. 3.10, we show both K and the

normal stresses σii/γ
2 for each bending interaction type. We observe that the networks

show qualitatively similar behavior in both cases, with K ∝ κ̃ and σii ∝ κ̃γ2 below

the critical strain. The only apparent difference is that the magnitudes of K and

the normal stresses are slightly higher for bond-bending networks than for networks

with freely-hinging crosslinks in the bending-dominated regime. This is due to the

additional angle constraints imposed by bond-bending interactions.
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Figure 3.10: Top: Differential shear modulus K vs. shear strain γ for 2D phantomized
triangular networks with z = 3.4, κ̃ = 10−6 and δmax = 0.4, with freely-hinging crosslinks and
bending interactions only along fibers (triangles) and with bond-bending interactions between
all nearest-neighbor bonds (circles). Bottom: Normal stresses σxx and σzz, both normalized
by γ2, as a function of γ for the same systems. Both K and σii are higher in networks with
bond-bending interactions than in the same networks with freely-hinging crosslinks, due to the
additional angle constraints.

3.8.4 Packing-derived networks with varying connectivity

In Fig. 3.11, we show both N1/(σxzγ) and K for 2D packing-derived networks

of size W = 100 with κ = 10−5 and varying z. We observe that, for individual

samples, peaks in N1/(σxzγ) occur at the z-dependent critical strain. On average, the

Lodge-Meissner relation is satisfied.
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Figure 3.11: In 2D packing-derived networks with κ = 10−5 and varying z, we observe either
upward or downward peaks in N1/(σxzγ) (top) for individual samples at the z-dependent critical
strain γc, determined as the inflection point of K vs γ (bottom) plotted on a logarithmic scale.
When the stress is averaged over all samples, the network ensemble approximately satisfies the
Lodge-Meissner relation, such that N1/(σxzγ) = 1 over the full strain range.
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Scaling theory for mechanical critical

behavior in fiber networks

This chapter is adapted from Ref. [128]:

Jordan L. Shivers, Sadjad Arzash, Abhinav Sharma, and Fred C. MacKintosh.
Scaling Theory for Mechanical Critical Behavior in Fiber Networks. Physical
Review Letters, 122 (18): 188003, 2019.

4.1 Abstract

As a function of connectivity, spring networks exhibit a critical transition between

floppy and rigid phases at an isostatic threshold. For connectivity below this threshold,

fiber networks were recently shown theoretically to exhibit a rigidity transition with

corresponding critical signatures as a function of strain. Experimental collagen

networks were also shown to be consistent with these predictions. We develop a scaling

theory for this strain-controlled transition. Using a real-space renormalization approach,

we determine relations between the critical exponents governing the transition, which

we verify for the strain-controlled transition using numerical simulations of both

triangular lattice-based and packing-derived fiber networks.
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4.2 Introduction

It has long been recognized that varying connectivity can lead to a rigidity transition

in networks such as those formed by springlike, central force (CF) connections between

nodes. Maxwell introduced a counting argument for the onset of rigidity for such

systems in d dimensions with N nodes, in which the number of degrees of freedom dN

is balanced by the number of constraints Nz/2, where z is the average coordination

number of the network [46]. The transition at this isostatic point of marginal stability

has been shown to exhibit signatures of criticality. Such a balance of constraints and

degrees of freedom is important for understanding rigidity percolation and jamming

[41, 65, 81, 129, 130]. Even in networks with additional interactions that lead to

stability below the CF isostatic point, the mechanical response can still exhibit strong

signatures of criticality in the vicinity of the CF isostatic point [48, 68, 79, 119]. More

recently, criticality has been shown in fiber networks as a function of strain for systems

well below the isostatic point [50].

While both jammed particle packings and fiber networks exhibit athermal (T = 0)

mechanical phase transitions and superficially similar critical behavior, these systems

have strong qualitative differences. In particular, there is growing evidence that the

jamming transition is mean-field [81, 131]. Goodrich et al. recently proposed a scaling

theory and performed numerical simulations of jamming which both demonstrate

mean-field exponents and support the conclusion that the upper critical dimension

du = 2 for the jamming transition [131]. In contrast, fiber networks to date have

shown distinctly non-mean-field behavior [48, 50, 68, 119]. Although many aspects of

the critical behavior of fiber networks, including various critical exponents, have been

quantified, prior studies have been limited to to simulations and the development of

effective medium theories. Importantly, a theory has been lacking to identify critical

exponents or even scaling relations among exponents, in order to understand the

observed non-mean-field character of the stiffening transition in fiber networks. Here,
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we develop a scaling theory for both the sub-isostatic, strain controlled transition, as

well as the transition in z near the isostatic point for athermal fiber networks. We

derive scaling relations among the various exponents and demonstrate good agreement

with numerical simulations. Interestingly, our results imply that the upper critical

dimension for fiber networks is du > 2, in contrast with jamming packings.

Figure 4.1: (a) Schematic phase diagram depicting the state of mechanical rigidity of a central
force network as a function of coordination number z and applied shear strain γ. The arrow A
depicts the strain-controlled transition and B depicts the transition at the isostatic point. With
the addition of bending interactions, the floppy region becomes instead bending-dominated, but
the critical curve γc(z) vs. z remains the same. (b) Portion of a a triangular network and (c) a
2D packing-derived network, both diluted to z = 3.3 < zc.

Near the isostatic point with average coordination number z = zc = 2d, spring

networks exhibit linear shear moduli G that vary as a power of |z − zc| for z > zc

[79, 81, 132]. In the floppy or sub-isostatic regime with z < zc, such systems can

be stabilized by introducing additional interactions [48, 79] or by imposing stress

or strain [133, 134]. It was recently shown that sub-isostatic networks undergo a

transition from floppy to rigid as a function of shear strain γ [50, 52]. Moreover,

this fundamentally nonlinear transition was identified as a line of critical points

characterized by a z−dependent threshold γc(z), as sketched in Fig. 4.1a. Above

this strain threshold, the differential or tangent shear modulus K = dσ/dγ scales as
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a power law in strain, with K ∼ |γ − γc|f . Introducing bending interactions with

rigidity κ between nearest neighbor bonds stabilizes sub-isostatic networks below the

critical strain, leading to K ∼ κ for γ < γc. Both of these regimes are captured by

the scaling form [135]

K ≈ |γ − γc|f G±
(
κ/|γ − γc|φ

)
(4.1)

for κ > 0, in which the branches of the scaling function G± account for the strain regimes

above and below γc. This scaling form was also shown to successfully capture the

nonlinear strain stiffening behavior observed in experiments on reconstituted networks

of collagen, a filamentous protein that provides mechanical rigidity to tissues as the

primary structural component of the extracellular matrix [52]. Collagen constitutes

an excellent experimental model system on which to study this transition, as it forms

elastic networks that are deeply sub-isostatic (z ≈ 3.4 [136], whereas zc = 6 in 3D) in

which individual fibrils have sufficiently high bending moduli to be treated as athermal

elastic rods.

4.3 Scaling theory

For the strain-controlled transition at a fixed z < zc (arrow A in Fig. 4.1a), we

define a reduced variable t = γ − γc that vanishes at the transition and let h(t, κ)

denote the Hamiltonian or elastic energy per unit cell. This energy depends on the

bending stiffness κ that also vanishes at the transition. Assuming the system becomes

critical as t, κ → 0, we consider the real-space renormalization of the system when

scaled by a factor L to form a block or effective unit cell composed of Ld original

cells, where d is the dimensionality of the system [137]. Under this transformation,

the energy per block becomes h(t′, κ′) = Ldh(t, κ), where t′ and κ′ are renormalized

values of the respective parameters. We assume that the parameters evolve according

to t → t′ = tLx and κ → κ′ = κLy, where the exponents x, y can be assumed to be
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positive, since the system must evolve away from criticality. Combining these, we find

the elastic energy

h(t, κ) = L−dh(tLx, κLy). (4.2)

The stress is simply given by the derivative with respect to strain of the elastic

energy per volume, which is proportional to h(t, κ). Thus, σ ∼ ∂
∂γ
h ∼ ∂

∂t
h(t, κ) ∼

L−d+xh1,0(tLx, κLy) and the stiffness

K =
∂

∂γ
σ ∼ ∂2

∂t2
h(t, κ) ∼ L−d+2xh2,0(tLx, κLy), (4.3)

where hn,m refers to the combined n-th partial with respect to t and m-th partial with

respect to κ of h. Being derivatives of the energy with respect to the control variable

γ, the stress and stiffness are analogous to the entropy and heat capacity for a thermal

system with phase transition controlled by temperature. If we let L = |t|−1/x, then

the correlation length scales according to ξ ∼ L ∼ |t|−ν , from which we can identify

the correlation length exponent ν = 1/x. Thus, the stiffness can be expressed as in

Eq. (4.1), where G± (s) ∼ h2,0(±1, s) and

f = dν − 2 and φ = yν. (4.4)

The first of these is a hyperscaling relation analogous to that for the heat capacity

exponent for thermal critical phenomena, but with the opposite sign. Thus, f > 0

corresponds to nonlinear stiffness K that is non-divergent. For γ > γc, we expect that

h2,0(1, s) is approximately constant for s� 1, so that K ∼ |γ − γc|f , while for γ < γc

we expect that h2,0(−1, s) ∼ s for s� 1, so that

K ∼ κ|γ − γc|−λ, (4.5)

consistent with a bending-dominated regime. Moreover, the susceptibility-like exponent
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is expected to be λ = φ− f .

Near the critical strain, athermal networks exhibit large, nonaffine internal rear-

rangements in response to small changes in applied strain [50, 52]. These nonaffine

strain fluctuations are analogous to divergent fluctuations in other critical systems. In

response to an incremental strain strain step δγ, the nonaffine displacement of the

nodes is expected to be proportional to δγ. Thus, the nonaffine fluctuations can be

captured by δΓ ∼ 〈
∣∣δu− δuA∣∣2〉/δγ2, where δu− δuA represents the deviation relative

to a purely affine displacement δuA. For large systems with small κ, δΓ diverges as

t→ 0 [52]. Since the nonaffine displacements δu2 are determined by the minimization

of h(t, κ), for small κ, h ∼ κδu2 ∼ κδγ2δΓ. Thus, the nonaffine fluctuations are

predicted to diverge as

δΓ ∼ ∂

∂κ

∂2

∂t2
h(t, κ) ∼ |t|−λ, (4.6)

with the same exponent λ = φ− f as in Eq. (4.5).

4.4 Computational model

To test the scaling relations derived above, we study two complementary models

of fiber networks: triangular lattice-based networks and jammed packing-derived

networks. Our triangular networks consist of fibers of length W arranged on a periodic

triangular lattice with lattice spacing l0 = 1, with freely-hinging crosslinks attaching

overlapping fibers. To avoid system-spanning straight fibers, we initially cut a single

randomly chosen bond on each fiber, yielding an initial network coordination number

z approaching 6 from below with increasing W [48, 113]. We prepare packing-derived

networks by populating a periodic square unit cell of side length W with N = W 2

randomly placed, frictionless bidisperse disks with soft repulsive interactions and with

a ratio of radii of 1: 1.4. The disks are uniformly expanded until the point at which the

system develops finite bulk and shear moduli, after which a contact network excluding
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rattlers is generated [47, 81, 117]. Sufficiently large networks prepared using this

protocol have an initial connectivity z ≈ zc [138].

For both network structures, we reduce z to a value below the isostatic threshold

by bond dilution and removal of dangling ends (see Appendix, Section 4.8). We use a

random dilution process, in contrast with special cutting protocols that have been used

previously to suppress variation in local connectivity and promote mean-field behavior

[79, 139]. Unless otherwise stated, we use triangular networks of size W = 140 and

packing-derived networks of size W = 120, both with z = 3.3, and simulate ensembles

of at least 30 network realizations each. Sample network structures are shown in Fig.

4.1b-c.

We treat each bond as a Hookean spring with 1D modulus µ, such that the

contribution of stretching to the network energy is

HS =
µ

2

∑
〈ij〉

(lij − lij,0)2

lij,0
(4.7)

in which lij and lij,0 are the length and rest length, respectively, of the bond connecting

nodes i and j. Bending interactions are included between pairs of nearest-neighbor

bonds, which are treated as angular springs with bending modulus κ. For triangular

networks, bending interactions are only considered between pairs of bonds along each

fiber, which are initially collinear, whereas for packing-derived networks we account

for all nearest-neighbor bonds. The contribution of bending to the network energy is

HB =
κ

2

∑
〈ijk〉

(θijk − θijk,0)2

lijk,0
(4.8)

in which θijk and θijk,0 are the angle and rest angle, respectively, between bonds ij

and jk, and lijk,0 = (lij,0 + ljk,0)/2. We set µ = 1 and vary the dimensionless bending

stiffness κ 1.

1Note that κ refers to the dimensionless bending stiffness κ ≡ κb/(µl2c), in which κb is the bending
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We apply incremental quasistatic simple shear strain steps using Lees-Edwards

periodic boundary conditions [85], minimizing the total network energy H = HS +HB

at each step using the FIRE algorithm [83]. We compute the stress tensor as

σαβ = − 1

A

∑
i

fi,αui,β. (4.9)

in which ui is the position of node i, fi is the total force acting on node i, and A is

the area of the system [86, 90] (see Appendix, Section 4.8). For the triangular lattice,

A = (
√

3/2)W 2, and for packing-derived networks, A = W 2. The differential shear

modulus K is computed as K = ∂σxy/∂γ. To symmetrize K, we shear each network in

both the γ > 0 and γ < 0 directions. Figure 4.2a shows K(γ) for triangular networks

with varying bending rigidity.

4.5 Results

4.5.1 Near the critical strain

First, we consider the scaling of K as a function of strain near γc. We determine

γc for individual samples as the strain corresponding to the onset of finite K in the

CF (κ = 0) limit, and utilize the mean of the resulting distribution, 〈γc〉, for our

scaling analysis. The γc distribution for triangular networks of size W = 140 is shown

in Figure 4.2a. We observe that with increasing system size, the width of the γc

distribution decreases (see Appendix, Section 4.8). The stiffness K exhibits a small

discontinuity at γc for κ = 0, as shown in Fig. 4.2a, consistent with prior reports in

similar networks [77, 140]. We note that this discontinuity is, however, consistent with

the critical nature of the transition, since K is not an order parameter.

We then determine f from K ∼ |γ − γc|f in the low-κ limit. We obtain a

rigidity used in the simulations and lc is the average bond length in the unstrained network, lc = 〈lij,0〉,
with lc = l0 = 1 for triangular networks and lc ≈ 1.03 for packing-derived networks.

72



4.5. Results

10
-1

10
0

10
-6

10
-4

10
-2

10
0

10
2

K

c

= 10-2

= 10-2.5

= 10-3

= 10-3.5

= 10-4

= 10-4.5

= 10-5

= 10-5.5

= 10-6

= 0

0.2 0.25

c

0

0.5

P
(

c
)

= 0
c

10
-2

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

K

f

1

>
c

10
-2

10
-1

| |

10
0

10
2

10
4

K
/

1

<
c

(b)(a)

Figure 4.2: (a) Differential shear modulus K vs. shear strain for triangular networks of
connectivity z = 3.3, with varying reduced bending stiffness κ. The dashed line indicates the
observed critical strain γc for the ensemble. The inset shows the probability distribution of γc for
50 individual network samples with κ = 0. (b) For γ > γc and with decreasing κ, K converges
to the form K ∼ |γ − γc|f , with f = 0.73± 0.04. These data are for the same networks as in
(a). Inset: In the low-κ limit and below γc, K/κ converges to a power law in |∆γ| with exponent
f − φ ≈ −1.5.

distribution of estimated f values using sample-specific K curves and γc values for

networks with κ = 0, yielding an estimate of f = 0.73± 0.04 for triangular networks,

as shown in Fig. 4.2b with decreasing κ. Similarly, for packing-derived networks we

find f = 0.68± 0.04 (see Appendix, Section 4.8). We then estimate φ by averaging

values computed from two separate scaling predictions, as follows. For γ < γc, we

show the results for Eq. (4.5) in the inset to Fig. 4.2b. We also note that continuity

of K as a function of strain near γc requires that G±(s) ∼ h2,0(±1, s) ∼ sf/φ for

large s. Thus, K(γc) ∼ κf/φ, as shown in the insets of Fig. 3a-b. Averaging the φ

values computed from these corresponding fits, using our previously determined values

for f , we estimate φ = 2.26 ± 0.09 for triangular networks and φ = 2.05 ± 0.08 for

packing-derived networks. These values of f and φ are used in Figs. 4.3a-b, which

demonstrate the collapse according to Eq. (4.1)2.

2Interestingly, the values of f for these two systems appear to be consistent. It is unclear whether
the difference between the corresponding values of φ is significant.
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Figure 4.3: Plotting the K vs. |∆γ| data for both (a) triangular networks and (b) packing-
derived networks according to the Widom-like scaling predicted by Eq. 4.1, and using the values
of f and φ determined previously, yields a successful collapse for both systems. Dashed lines
have slope 0 and dotted lines have slope 1. Insets: At the critical strain, K ∼ κf/φ.

We compute the nonaffine fluctuations δΓ as

δΓ =
1

Nl2cδγ
2

∑
i

‖δuNA
i ‖2 (4.10)

in which N is the number of nodes, lc is the average bond length, and δuNA
i = δui−δuA

i

is the nonaffine component of the displacement of node i due to the incremental strain

δγ. Plotting δΓ vs. γ− γc in Fig. 4a, we observe agreement with the scaling predicted

from Eq. (4.9) using the f and φ values determined above. Importantly, as predicted,

the corresponding critical exponent λ = φ − f is the same as for Eq. (4.5), with

λ ' 1.5 [141]. Further, we observe that near γc, the expected scaling δΓ(γc) ∼ κf/φ−1

appears to be satisfied (see Appendix, Section 4.8).

It is apparent from Fig. 4a that the divergence of the fluctuations near γc is

suppressed by finite-size effects. This is consistent with a diverging correlation length

ξ ∼ |t|−ν . Critical effects such as the divergence of δΓ are limited as the correlation

length becomes comparable to the system size W , corresponding to a value of t ∼
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tW = W−1/ν . Thus, the maximum value of δΓ increases as δΓ ∼ W (φ−f)/ν (Fig. 4.4a

inset). From least-squares fits to this scaling for both triangular and packing-derived

networks with κ = 0 and κ = 10−7, combined with our estimates for φ and f , we

determine that ν = 1.3 ± 0.2 for both systems. We then verify that this leads to a

scaling collapse in a plot of δΓW (f−φ)/ν vs tW 1/ν for both systems with κ = 0, as

shown in Fig. 4b, and with finite κ (see Appendix, Section 4.8). This finite-size scaling

is consistent with the (hyperscaling-like) relation f = 2ν − 2 in 2D from Eq. (4.4).
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Figure 4.4: (a) Near the critical strain, the nonaffinity scales as δΓ ∼ |∆γ|f−φ. These data
correspond to triangular networks with κ = 10−7 and z = 3.3, with varying system size. Inset:
Nonaffine fluctuations are limited by the system size. For small or zero κ, the maximum of δΓ
scales as max(δΓ) ∼W (φ−f)/ν , with ν = 1.3±0.2. (b) Plots of δΓ/W (φ−f)/ν vs. (γ−γc)W 1/ν

for triangular networks and (inset) packing-derived networks with κ = 0 demonstrate successful
scaling collapse using the f and φ values determined from K, with ν values determined from
the scaling relation.

4.5.2 Near the isostatic point

For networks near the isostatic transition at z = zc, we define a dimensionless

distance ∆ = z − zc from the isostatic point and let h(γ, κ,∆) be the Hamiltonian or

elastic energy per unit cell. At the isostatic point, since γc = 0, t above reduces to

the strain γ. Assuming the system becomes critical as γ, κ,∆→ 0, we can follow a
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similar real-space renormalization procedure as above, resulting in

h(γ, κ,∆) = L−dh(γLx, κLy,∆Lw). (4.11)

Although the exponents x, y, and w at the isostatic point can be assumed to be

positive, we do not necessarily assume the same values of the exponents x and y as

determined for the strain-controlled transition. We can again determine the stress

σ and stiffness K as in Eq. (4.3). By letting L = |∆|−1/w, we again identify the

correlation length exponent ν ′ = 1/w and find

K ∼ |∆|f ′h2,0,0(0, κ/|t|φ′ ,±1), (4.12)

where

f ′ = (d− 2x)ν ′, φ′ = yν ′. (4.13)

Moreover, following similar arguments as above, it can be shown that δΓ ∼ |∆|−λ′ ,

where λ′ = φ′ − f ′ [142] (see Appendix, Section 4.8), consistent with the values

f ′ ' 1.4± 0.1, φ′ ' 3.0± 0.2, ν ′ ' 1.4± 0.2, and λ′ ' 2.2± 0.4 reported in Ref. [48].

While our approach uses the elastic energy, it is interesting to note that prior work

on rigidity percolation has suggested the use of the number of floppy modes as a free

energy [44].

4.6 Conclusions

The scaling theory and relations derived here for the strain- and connectivity-

controlled rigidity transitions in athermal fiber networks are consistent with our

numerical results, as well as prior results near the isostatic point [48, 68, 119]. Inter-

estingly, for the subisostatic, strain-controlled transition, we observe that simulations

of both triangular and packing-derived networks exhibit consistent non-mean-field
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exponents. This, together with agreement with the hyperscaling relation in Eq. (4.4)

suggest that the upper critical dimension for fiber networks is du > 2, in contrast with

jammed packings at the isostatic point [131]. Our observations, combined with prior

evidence of similar exponents for alternate subisostatic network structures, including

2D and 3D phantom networks, honeycomb networks, and Mikado networks [50, 51],

suggest that non-mean-field behavior might be ubiquitous in randomly-diluted subiso-

static networks. Interestingly, the hyperscaling relation in Eq. (4.4), together with the

observation that f > 0, suggests that fiber networks satisfy the Harris criterion [143],

which would imply that such networks should be insensitive to disorder. Further work

will be needed to test this hypothesis, as well as the scaling relations derived here in

3D.
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4.8 Appendix

4.8.1 Removal of disconnected and dangling clusters

Our reported coordination number z corresponds to the average network coordi-

nation after the removal of dangling and disconnected bond clusters, which do not

contribute to the network’s mechanical response in the zero-frequency limit. Dangling

clusters, shown in Fig. 4.5a, are defined as clusters of bonds connected to the rest

of the network by a single bond, or “bridge”. Bridges are identified as biconnected

components containing only a single bond and subsequently removed, resulting in

disconnected clusters. Disconnected clusters, shown in Fig. 4.5b, are then removed

by identifying all connected components in the network and removing all but the

largest, corresponding to the bulk network. The Boost graph library [84] is utilized

for identification of connected and biconnected components.
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Figure 4.5: (a) A dangling cluster (red) is defined as a cluster of bonds connected to the rest
of the network by only one bond. These are detected and removed by removing “bridges,” bonds
which, if cut, disconnect the graph. Bridges are identified as biconnected components containing
only one bond. (b) A disconnected cluster (red) is a cluster of bonds that is disconnected from
the bulk network. We remove these by identifying all independent connected components and
retaining only the largest one.

4.8.2 System-size dependence of the critical strain distribution

We determine the critical shear strain γc for each network sample as the strain

corresponding to the onset of finite K in the κ = 0 limit. Consistent with prior work
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[77], we observe a decrease in the width of the γc distribution with increasing system

size, as shown in Fig. 4.6 for triangular networks.
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Figure 4.6: The probability distribution of the critical strain γc decreases in width with increasing
system size. These data correspond to triangular networks with κ = 0 and z = 3.3, with at least
50 networks each for each system size. The vertical black line denotes the average γc value for
networks of size W = 200.

4.8.3 Strain-controlled criticality in packing-derived networks

Fig. 4.7 shows the measured shear stress vs. strain for both triangular and packing-

derived networks. A transition from a bending-dominated regime with σxy ∼ κ to a

stretching-dominated regime with σxy ∼ µ occurs at the critical strain γc, at which

networks with κ = 0 develop nonzero stress. Figure 4.8 shows the computed K vs.

strain curves as well as the scaling of K with ∆γ for packing-derived networks, with

K ∼ |∆γ|f for γ > γc and K ∼ κ|∆γ|f−φ for γ < γc.
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Figure 4.7: Shear stress σxy vs. shear strain γ for (a) triangular networks of size W = 140 and
(b) packing-derived networks of size W = 120, both diluted to z = 3.3, with varying reduced
bending stiffness κ.
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Figure 4.8: (a) Differential shear modulus K vs. shear strain for diluted packing-derived
networks of size W = 120 and connectivity z = 3.3, with varying reduced bending stiffness
κ. The dashed line indicates the observed critical strain γc for the ensemble. The inset shows
the probability distribution for the measured γc values for 30 individual network samples with
κ = 0. (b) For γ > γc and with decreasing κ, K converges to the form K ∼ |γ − γc|f , with
f = 0.68± 0.04. These data are for the same networks as in (a). Inset: In the low-κ limit and
below γc, K/κ converges to a power law in |∆γ| with exponent f − φ ∼ −1.37.
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4.8.4 Bending-rigidity dependence of the nonaffine fluctuations

For both triangular and packing-derived networks, finite bending rigidity suppresses

nonaffine fluctuations, as shown in Fig. 4.9a/c. At the critical strain, the nonaffine

fluctuations grow with decreasing κ as κ(f−φ)/φ (see Fig. 4.9b/d), as predicted by the

scaling theory in the main text.

10-6 10-4 10-2

101

102

103

d
(

c
)

slope = (f- )/  = -0.677

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

d

10-6 10-4 10-2
100

101

102

103

d
(

c
)

slope = (f- )/  = -0.668

10
-1

10
0

10
-1

10
0

10
1

10
2

10
3

d

Triangular Triangular

Packing-derived Packing-derived

(a) (b)

(c) (d)

Figure 4.9: Differential nonaffinity dΓ vs. strain γ for (a) triangular networks of size W = 140
and (c) packing-derived networks of size W = 120, both with z = 3.3 and varying bending
rigidity κ. Colors here correspond to those in Figs. 1-3 of the main text. Plotting the values of
dΓ at the critical strain as a function of κ, we observe reasonable agreement at the inflection
point with the predicted scaling dΓ(γc) ∼ κ(f−φ)/φ for both network models (panels b and d)
using the f and φ values determined independently based on K. Error bars represent standard
error of the mean.
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4.8.5 Finite-size scaling of the nonaffine fluctuations in networks

with finite bending rigidity

We observe that the same finite size scaling of dΓ shown for networks with κ = 0

in Fig. 4 of the main text is also satisfied for networks with small but finite κ, as

shown in Fig. 4.10.
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Figure 4.10: Plots of δΓ/W (φ−f)/ν vs. (γ − γc)W 1/ν for (a) triangular networks and (b)
packing-derived networks with z = 3.3 and κ = 10−7 and varying system sizes demonstrate
successful scaling collapse using the f , φ, and ν values determined in the main text.

4.8.6 Finite-size scaling from previous work

We demonstrate that while the exponents of f = 0.75 ± 0.05 and ν = 2.0 ± 0.1

reported for phantom triangular networks in Ref. [50] disagree with our scaling relation

f = 2ν − 2, the data used to determine these exponents can be replotted using the

predicted ν value of ν = (f + 2)/d = 1.38 and with an adjusted value of γc(∞) to

achieve a reasonable scaling collapse (see Fig. 4.11).
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Figure 4.11: Data from Ref. [50], replotted with permission. (a) K vs. γ for phantom triangular
networks with z = 3.2 and varying system size W . (b) The data from the previous panel plotted
according to the finite size scaling relation K ∼ W−f/νF±

(
|∆γ|W 1/ν

)
, using f = 0.75,

ν = (f + 2)/d = 1.38, and γc(∞) = 0.129. We observe reasonable collapse, comparable to
that shown in Ref. [50]. (c) The scaling of |γc(∞)− γc(W )| vs. W using this modified value of
γc(∞) shows agreement with the predicted scaling of |γc(∞)− γc(W )| ∼W−1/ν .

4.8.7 Stress tensor calculation

For a system with point-like elements with positions ui, the stress tensor σ can be

expressed as follows [86, 90]:

σαβ = − 1

A

∑
i

fi,αui,β (S1)

in which the sum is taken over all nodes i, fi = −∂H/∂ui is the total force exerted

on node i, and A is the system’s area (or volume in 3D). Eq. S1 can equivalently be

expressed as

σαβ =
1

2A

∑
ij

fij,αuij,β (S2)

in which the sum is taken over all pairs of nodes i and j, uij = uj − ui, and the force

on node i due to its interactions with node j is

fij =
∂H
∂uij

=
∂H
∂uij

∂uij
∂uij

=
∂H
∂uij

uij
uij

, (S3)
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satisfying fi =
∑

j fij and fij = −fji. While H may be composed of many-body

potentials, the decomposition of fi into (pairwise) central forces fij shown in Eq. S3

is possible if H is continuously differentiable [144, 145]. Several prior studies have

demonstrated computation of the stress tensor in systems with many-body potentials

using this central force decomposition [146–148].

Additionally, one can compute the components of the stress tensor using the

principle of virtual work, by manually taking derivatives of H with respect to the

various shear and normal strains:

σxz =
1

A

∂H
∂γ

(S3)

σxx =
1

A

∂H
∂εx

(S4)

σzz =
1

A

∂H
∂εz

(S5)

in which γ is simple shear strain and εx and εz are uniaxial strains along the x and

z axes, respectively. We have verified that these methods yield equivalent σ within

numerical error.
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Chapter 5

Critical slowing down in

underconstrained networks

This chapter is adapted from Ref. [149]:

Jordan L. Shivers, Abhinav Sharma, and Fred C. MacKintosh. Non-
affinity controls critical slowing down and rheology near the onset of rigidity.
arxiv:2203.04891, 2022.

5.1 Abstract

Fluid-immersed networks and dense suspensions often reside near a boundary

between soft (or fluid-like) and rigid (or solid-like) mechanical regimes. This boundary

can be crossed either by varying the concentration or by deformation. Near the onset or

loss of rigidity, dissipation-limiting nonaffine rearrangements dominate the macroscopic

viscoelastic response, giving rise to diverging relaxation times and power-law rheology.

Here, we derive a simple relationship between nonaffinity and excess viscosity in

fluid-immersed amorphous materials. We then demonstrate this relationship and

its rheological consequences in simulations of stress relaxation in strained filament

networks and dense suspensions.
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5.2 Introduction

Materials such as suspensions, emulsions, foams, and (bio)polymer networks are

inherently composite in nature, with both elastic and fluid-like components [53, 90].

In these systems, minor variations in parameters such as volume fraction [43, 150–152],

connectivity [46, 48, 129, 133], and applied strain [49, 140] can drive macroscopic tran-

sitions between fluid-like and solid-like behavior. These transitions are often heralded

by familiar features of critical phenomena [153–155], including power-law scaling of

relevant quantities with distance to a critical point [47, 79, 156] and diverging length

and time scales [157–160, 160–163]. As a consequence of their disorder, these materials

dissipate energy stored by applied stress or strain by deforming in a heterogeneous

or nonaffine manner, such that the microscopic and macroscopic deformation fields

differ significantly [133]. The associated microscopic nonaffine displacements can grow

dramatically in magnitude near the onset or loss of rigidity and strongly influence both

the static and dynamic mechanical properties of the macroscopic material. However,

these displacements are inherently neglected in continuum models and are notoriously

difficult to directly measure in experiments [164–166] except in special cases, such as

confocal microscopy of colloidal suspensions [167–169].

Indirect evidence of nonaffinity is possible to identify due to the intrinsic connection

between nonaffine fluctuations and energy dissipation, although specific rheological

models are required to quantify this connection. Prior studies have noted that, for dense

suspensions [80, 170–175], foams and emulsions [176, 177], and immersed networks [126,

139, 178], a simple steady-state balance between the power injected by deformation and

the power dissipated by nonaffine rearrangement can yield phenomenological scaling

relationships between the nonaffinity and the viscoelastic loss modulus, with important

consequences for both linear viscoelasticity and steady shear rheology. This has even

been used to identify critical exponents, e.g. for networks near isostaticity [126]. Yet,

many systems, including biopolymer networks such as the cellular cytoskeleton and
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extracellular matrix, are subjected to large and often transient applied stresses and

strains; in cells and tissues, this gives rise to highly strain-dependent and typically

power-law rheology [179, 180], the origins of which are not yet well understood. As

simulated networks under large deformations display enormous nonaffine fluctuations at

the onset of tension-dominated rigidity [28, 50, 114, 181, 182], a general understanding

of the dynamic effects of nonaffinity in nonlinear viscoelastic regimes is still needed.

Here, we identify a general relationship between the nonaffinity and loss modulus for

a fluid-immersed amorphous material and explore the ensuing rheological consequences

in simulations of networks and dense suspensions in two and three dimensions. With

the strain-dependent rheology of biopolymer networks in mind, we focus primarily on

the effects of prestrain on stress relaxation in fluid-immersed elastic networks, although

we demonstrate the generality of this approach also for suspensions. Focusing on

stress relaxation in underconstrained networks, we show that the longest relaxation

time diverges in tandem with the nonaffinity as the system approaches a rigidity

threshold. This leads to a scaling ansatz describing the relaxation modulus and

nonaffinity near the critical strain, which we validate in simulations. As a consequence

of this, we also identify a simple linear relationship between the static nonaffinity

and experimentally attainable zero-shear viscosity, which suggests a route for the

experimental measurement of nonaffine fluctuations. Finally, we discuss the effects of

the nonaffinity-dissipation relationship on the dynamic scaling exponents for strain

stiffening networks and demonstrate its utility in describing the rheology of dense

suspensions near jamming.
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Figure 5.1: (a) A fluid-immersed disordered spring network with connectivity z below Maxwell’s
isostatic point zc behaves as a solid, at long times, when subjected to simple shear strain γ0 that
exceeds a z-dependent critical strain γc. (b) Near the onset of rigidity, important rheological
and kinematic features scale as powers of the distance to the critical point, |γ0 − γc|. At γc, the
static differential shear modulus K∞ becomes nonzero, while both the zero-shear viscosity η0 and
static differential nonaffinity δΓ∞ diverge in the thermodynamic limit. (c) Energy produced by a
small affine step strain δγ is dissipated by microscopic nonaffine displacements uNA

i , indicated
here by arrows with uniformly scaled lengths.
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5.3 Methods

We consider the overdamped dynamics of a d-dimensional system composed of N

particles with positions ri interacting via a potential energy U = f(r1, ..., rN). These

are immersed in a Newtonian fluid with velocity field vf , which imparts a drag force

fd,i = −ζ(ṙi − vf (ri)) that exactly balances the interaction force fp,i = −∂U/∂ri, such

that each particle’s equation of motion is fd,i+fp,i = 0. This “free draining” description

ignores long-range hydrodynamic interactions [183], which in our materials of interest

can likely be neglected due to hydrodynamic screening. We apply macroscopic shear

strain γ(t) via Lees-Edwards periodic boundary conditions [85] and assume that

the fluid deforms affinely according to the macroscopically applied strain, such that

vf (ri) = ri,zγ̇(t)x̂; this is the widely used “affine solvent model” [43, 80, 126, 157, 171].

For a given strain rate and particle arrangement, the macroscopic shear stress is

σ = ηf γ̇ + (2V )−1
∑

ij fij,xrij,z, in which ηf is the viscosity of the fluid, V is the

system’s volume, the sum is taken over all pairs of interacting particles i and j, fij is

the force on particle i due to its interactions with particle j, rij = rj − ri, and x and

z denote the flow and gradient directions, respectively.

Nonaffinity quantifies the reorganization required for a system that is initially in

mechanical equilibrium (satisfying force balance or, equivalently, sitting at a minimum

in U(ri)) to re-equilibrate after a small affine perturbation [184, 185]. Consider

an initially energy-minimized system at some prestrain γ0, to which we apply an

instantaneous affine strain step δγ yielding transformed particle positions ri,0 with,

in general, a net force on each particle. Allowing the equations of motion to evolve

until the forces are once again balanced, we find that the particles take on new

positions ri,∞ that define static nonaffine displacements uNA
i,∞ = ri,∞ − ri,0, as sketched

in Fig. 5.1a. These collectively contribute to the static differential nonaffinity,

δΓ∞ = (N`2
0δγ

2)−1
∑

i ‖uNA
i,∞‖2. As we noted earlier, in response to even very small

perturbations, amorphous materials near points of marginal stability tend to undergo
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large-scale rearrangement signaled by large δΓ∞.

We construct an initial particle configuration ri and energy U(ri) representing a

disordered spring network (or, if bending interactions are included between adjacent

bonds, a bond-bending network) as described in Supplemental Material. In disordered

networks, the onset of rigidity is controlled by some control variable x, e.g. the

connectivity or applied strain. We focus here on subisostatic networks, in which z, the

connectivity or average number of springs connected to each network node (particle),

is below Maxwell’s d-dependent isostatic point zc = 2d [46]. Note that experimentally

observed values of z for three-dimensional biopolymer networks are generally between

3 and 4 [120] and thus below zc. We choose simple shear prestrain γ0 as the rigidity

control variable; in this case, static (t → ∞) solid-like behavior develops when γ0

reaches the z-dependent critical strain γc [79], as shown in Fig. 5.1a. For N, V →∞,

as γ0 approaches a critical point γc, the system’s zero-shear viscosity and nonaffinity

diverge, as sketched in Fig. 5.1b.

In Fig. 5.1c, we plot static nonaffine displacement vectors for a representative 2D

network with z = 3.5 under varying prestrain. The scale and correlation length of

the nonaffine displacements are largest at the critical strain γc corresponding to the

stiffening transition [114], at which the macroscopic static nonaffinity δΓ∞ reaches

a maximum (see Fig. 5.2b). Although the nonaffinity provides a clear signal of the

critical point in simulations, its measurement in experiments, often by tracking the

motion of embedded tracer particles [164–166], is challenging and limited in precision.

An attractive alternative is to indirectly measure the nonaffinity via its relationship

to more experimentally accessible quantities, such as the viscoelastic storage or loss

moduli. As we noted earlier, prior studies have shown that such a relationship exists

due to energy conservation: at steady state, the power injected into the system by

the externally applied stress balances the power dissipated by the system’s nonaffine

internal reorganization [80, 126, 139, 170–178].
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Figure 5.2: Stress relaxation tests reveal a slowest relaxation timescale τc that diverges
at the critical prestrain. (a) For a network of N = 6400 nodes with connectivity z = 3.5
and dimensionless bending rigidity κ̃ = 0 initially relaxed at prestrain γ0 and subjected to an
infinitesimal strain increase δγ, the normalized differential relaxation modulus K(t)/K(0) =
δσ(t)/δσ(0) decays to an equilibrium value with a γ0-dependent slowest relaxation time τc(γ0),
revealed by the terminal slope on a log-linear scale (inset) and shown in (b) along with the
associated static nonaffinity δΓ∞, and static differential shear modulus δσ∞/δγ. Here, δγ = 10−4

and dotted lines indicate the critical strain. (c) The time-dependent differential relaxation modulus
and differential nonaffinity, measured over a range of prestrains γ0, collapse according to the
Widom-like scaling predicted by Eqs 5.3 and 5.4, with exponents f = 0.7, φ = 2.2, and λ = 1.5.
(d) A (γ0, t) phase diagram summarizes the network’s time-dependent mechanical properties.
The dashed white curves are proportional to |γ0 − γc|−φ.
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5.4 Results and discussion

We can show that a similar power balance relates the nonaffinity and viscoelasticity

in systems within nonlinear viscoelastic regimes. Consider an energy-minimized

configuration under prestrain γ(t ≤ 0) = γ0. The system is subjected to a superimposed

oscillatory strain of amplitude δγ and frequency ω, such that γ(t) = γ0 + δγ sin(ωt)

for t > 0. After an initial transient regime, the stress adopts a steadily oscillating

profile σ(t) = σ0 + δσ sin(ωt+ θ), in which δσ is the amplitude and θ is the phase shift

between the stress and strain. Equivalently, σ(t) = σ0 + δγ (K ′ sin(ωt) +K ′′ cos(ωt)),

in which K ′(γ0, ω) = (δσ/δγ) cos θ and K ′′(γ0, ω) = (δσ/δγ) sin θ are the frequency-

dependent differential storage and loss moduli for systems at prestrain γ0. For small

δγ, each particle orbits a fixed position ri,0 with an elliptical path p(t) = ri(t)− ri,0

combining affine and nonaffine components pA
i (t) = uA

i (ω) sin(ωt+ θA) and pNA
i (t) =

uNA
i (ω) sin(ωt + θNA), with p(t) = pA(t) + pNA(t). Note that for systems without

a fixed topology, e.g. suspensions of soft spheres, ensuring that the particles follow

closed elliptical trajectories consistent with linearity can require very small δγ [186].

Collecting the magnitudes of the frequency-dependent nonaffine displacement vectors,

we define the frequency-dependent nonaffinity, δΓ(ω) = (N`2
0δγ

2)−1
∑

i ‖uNA
i (ω)‖2, in

which `0 is a characteristic length scale, e.g. the typical spring length. The drag acting

on each particle is proportional to its nonaffine velocity (its velocity with respect to the

fluid), ∂pNA
i /∂t = ωuNA

i (ω) cos(ωt+ θNA). Averaged over the duration of a cycle, the

external power input Pin = 1
2
V ωdγ2 (K ′′ − ηfω) balances the total power output by

nonaffine work, Pout = 1
2
Nω2ζ`2

0δγ
2δΓ(ω) (see Supplemental Material). Thus we have

a quantitative relationship between the differential dynamic viscosity η′(ω) = K ′′(ω)/ω

and the frequency-dependent nonaffinity

η′(ω)− ηf = ρζ`2
0δΓ(ω) (5.1)
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in which ρ = N/V is the number density of particles. In the zero-frequency limit, this

relates the zero-shear differential viscosity, η0 = limω→0 η
′(ω) and the static nonaffinity

δΓ∞ = limω→0 δΓ(ω) as

η0 − ηf = ρζ`2
0δΓ∞. (5.2)

It should be emphasized that in Eqs. 5.1 and 5.2 are valid for any prestrain. The

latter tells us that the presence of interacting particles (e.g. a spring network) within

a fluid with viscosity ηf increases the mixture’s effective zero-shear viscosity by a

simple multiple of the particles’ fluid-independent static nonaffinity. This relationship

is valid irrespective of the interaction potential U and thus applies to a wide range of

systems including, as we will demonstrate, networks of bending-resistant filaments

and soft sphere suspensions near jamming.

To demonstrate the ensuing rheological consequences, we now consider a system’s

dynamic response to a perturbation in the form of an instantaneous strain step.

To an initially relaxed system at prestrain γ0 with prestress σ0, we apply an affine

strain step of magnitude δγ, such that γ(t) = γ0 + δγ for t ≥ 0. As the equations

of motion are integrated, the particles shift from their initial, affinely-transformed

positions with nonaffine displacements uNA
i (t) = ri(t) − ri(0), as sketched in Fig.

5.1a for t → ∞. These collectively define a dimensionless relaxation nonaffinity

δΓ(t) = (N`2
0δγ

2)−1
∑

i ‖uNA
i (t)‖2, which eventually settles to the static nonaffinity

δΓ∞ = limt→∞ δΓ(t). We measure the corresponding change in shear stress δσ(t) =

σ(t)−σ0 and compute the differential relaxation modulus K(t) = δσ/δγ and differential

zero-shear viscosity η0−ηf =
∫∞

0
(K(t)−K∞)dt, in which the static differential modulus

is K∞ = limt→∞K(t). Note that, for γ0 = 0, K and δΓ correspond to the usual linear

relaxation modulus G(t) = limγ0→0K(t) and linear nonaffinity Γ(t) = limγ0→0 δΓ(t).

Because the static nonaffinity δΓ∞ diverges at the critical strain, Eq. 5.2 implies

that we should observe an equivalently diverging zero-shear viscosity and associated

diverging slowest relaxation time. In Fig. 5.2a, we plot stress relaxation curves
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for a single two-dimensional network with z = 3.5, with infinitesimal step strains

applied over a range of prestrains γ0 containing γc. The normalized relaxation mod-

ulus K(t)/K(0) = δσ(t)/δσ(0) decays to its equilibrium value K∞/K(0) with a

γ0-dependent slowest relaxation time τc (calculated as described in Supplemental Ma-

terial), which is plotted in Fig. 5.2b as a function of γ0 along with the corresponding

static nonaffinity δΓ∞, and static differential modulus K∞ = δσ∞/δγ. Maxima in

τc and δΓ∞ occur at the critical strain, where K∞ becomes nonzero. We assign the

exponent φ to the scaling of τc with |γ0 − γc| and, following previous conventions for

the static exponents [50], assign λ to δΓ∞ and f to K∞.

The relaxation modulus decays as a power-law over a range of times spanning

from τ0 = ζ`0/µ = 1, corresponding to the relaxation time for a single spring-driven

node in the solvent, to a characteristic slow timescale governed by the distance from

the critical strain, τc = |γ0 − γc|−φ. Within this regime, the relaxation modulus is

a function of the ratio t/τc ≡ |γ0 − γc|φ. Beyond τc, we expect to observe the static

critical behavior, i.e. K∞ ∝ |γ0 − γc|f for γ0 ≥ γc. We thus expect the relaxation

modulus to obey the scaling form

K(t) = |γ0 − γc|fF±
(
t|γ0 − γc|φ

)
(5.3)

in which the branches of the scaling function F±(x) correspond to the regimes above

and below the critical strain. When x� 1, F+(x) ∼ constant and F−(x) ∼ exp(−x),

implying K(t) ∼ |γ0− γc|f above the critical strain and K(t) ∼ |γ0− γc|f exp(−t|γ0−

γc|φ) below the critical strain. When x � 1, K(t) remains finite and thus must be

independent of |γ0 − γc|, so F±(x) ∼ x−f/φ. Therefore, for systems at the critical

point, the relaxation modulus is predicted to decay as K(t) ∝ t−f/φ.

Near the critical strain, the differential nonaffinity is controlled by the same

diverging timescale τc, yet should eventually display the static critical behavior δΓ ∝
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|γ0 − γc|−λ. We thus expect the scaling form

δΓ(t) = |γ0 − γc|−λG±
(
t|γ0 − γc|φ

)
(5.4)

When x� 1, G+(x) ∼ constant and G−(x) ∼ constant. When x� 1, δΓ(t) likewise

remains finite and therefore must be independent of |γ0 − γc|, so G±(x) ∼ xλ/φ. This

implies that, very close to the critical strain, the differential nonaffinity grows with

time as δΓ(t) ∝ tλ/φ. We observe excellent collapse of K(t) and δΓ(t) according to

these scaling forms, as shown in Fig. 5.2, for f = 0.7, φ = 2.2, and λ = 1.5.

Before discussing the relationships between these exponents, we verify that the

independently measured static differential nonaffinity and differential zero-shear vis-

cosity behave identically. In Fig. 5.3a, we demonstrate that, like δΓ∞, the zero-shear

viscosity η0 reaches a maximum at the phase boundary between the statically floppy

and rigid regimes, in this case for networks with κ̃ = 0. In Fig. 5.3b, we plot the

differential zero-shear viscosity for networks with varying dimensionless bending rigid-

ity κ̃ and observe, in precise agreement with Eq. 5.2, a divergence in η0 − ηf at the

critical strain that is suppressed by increasing κ̃, which acts as a stabilizing field [50].

In Supplemental Material, we verify that the same nonaffinity-viscosity relationship

applies in dense suspensions of frictionless soft spheres, in which the viscosity diverges

near a critical volume fraction φc.

The aforementioned power balance leads to a relationship between the static

scaling exponents, f and λ, and the dynamic exponent, φ. At the critical strain, the

relaxation modulus decays as K(t) ∼ t−f/φ and the nonaffinity grows as δΓ(t) ∼ tλ/φ,

so the corresponding frequency dependence of the complex modulus and nonaffinity

must be K∗(ω) ∼ ωf/φ and δΓ(ω) ∼ ω−λ/φ. The former implies that the effective

viscosity grows as η′(ω) ∼ ωf/φ−1, hence Eq. 5.1 implies φ = f + λ. Interestingly,

this means that the static scaling of the stiffness and nonaffinity controls φ and,
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Figure 5.3: The excess zero-shear viscosity η0 − ηf precisely tracks the nonaffinity, reproducing
(a) its peak at the z-dependent critical strain γc. These data correspond to networks in two
(N = 10000 nodes) and three (N = 8000 nodes) dimensions with κ̃ = 0. (b) For a network
(N = 1600 nodes) with finite bending rigidity κ̃, the divergence of the zero-shear viscosity η0−ηf
at γc is suppressed by bending, yet Eq. 5.2 (dashed line) is still satisfied for all κ̃. (c) The
maximum zero-shear viscosity and critical relaxation time, which appear at the critical strain γc,
scale as negative powers of the dimensionless bending rigidity as predicted by Eqs. 5.5 and 5.6.

by extension, the dynamic exponents f/φ and λ/φ describing the system’s stress

relaxation and time-dependent rearrangement, as prior work has noted for the scaling

exponents describing connectivity-dependent dynamics in networks near isostaticity

[126]. Alternatively, we can rationalize this finding with a more qualitative argument:

the relaxation time of large structural rearrangements scales with the “size” of these

rearrangements, i.e. δΓ∞ ∼ |∆γ|−λ, divided by the magnitude of their driving force,

proportional to K∞ ∼ |∆γ|f , hence τc ∼ |∆γ|−(λ+f), with units set by the fluid
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viscosity. This relationship implies that the dynamic exponent φ is identical to the

exponent describing the critical coupling of a network to the bending rigidity, defined

in prior work [50]. Therefore, at the critical strain, the excess zero-shear viscosity

should scale with bending rigidity just as the quasistatic nonaffinity does [128],

η0(γc)− ηf ∝ κ̃−λ/φ (5.5)

and the corresponding maximum relaxation time should scale simply as

τc(γc) ∝ κ̃−1, (5.6)

independently of the critical exponents. In Fig. 5.3c, we show that these relationships

are satisfied in our simulations. In experiments, these relationships could be tested

by varying a reconstituted gel’s protein concentration c (for collagen, past work has

suggested κ̃ ∝ c [50, 98]).

5.5 Conclusions

There is widespread interest in the rational design of materials with tunable vis-

coelasticity [105, 187, 188]. This generally involves adjusting aspects of a material’s

preparation, such as the volume fraction of suspended particles or the concentration

of a gel-forming polymer. Here, we have shown that a simple connection between

nonaffine fluctuations and energy dissipation, which implies proportionality between

nonaffinity and viscosity, leads to extreme strain-controlled tunability of stress relax-

ation in structurally unchanged filament networks. To demonstrate this relationship’s

generality, we have also shown that it fully captures the diverging zero-shear viscosity

in suspensions of soft frictionless spheres near the onset of jamming.

The association of diverging nonaffine fluctuations with the onset of rigidity,
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coupled with their microscopic role in slowing stress relaxation, may account for prior

observations of slow dynamics in disordered materials such as fractal colloidal gels

[189, 190] and crowded, prestressed living cells [20, 191–193]. This also suggests new

avenues for tuning the dynamics of stress relaxation; for example, in fibrous networks,

microscopic components that generate localized internal stresses can drive macroscopic

stiffening transitions and thus precisely control the nonaffinity [134]. Relevant examples

include molecular motors in the cellular cytoskeleton [73, 194, 195], contractile cells in

the extracellular matrix [33, 109, 196], and embedded particles driven to shrink due

to changes in temperature [197] or rearrange under applied magnetic fields [198].

Additional work will be needed to characterize the effects of finite system size

on nonaffinity-induced critical slowing down near the onset of rigidity. For networks

at the critical strain with correlation length exponent ν, we expect τc(γc) ∝ Lφ/ν

and η0(γc) − ηf ∝ Lλ/ν (see Supplemental Material), suggesting additional ways to

identify ν and test the previously proposed hyperscaling relation, ν = (f + 2)/d [128].

Other areas to investigate include the effects of hydrodynamic interactions near the

critical strain, as these both increase nonaffinity near isostaticity [127] and couple

with nonaffinity to produce an additional intermediate-frequency viscoelastic regime

at small strains [199], and the effects of finite temperature: the Green-Kubo relations

tie the stationary stress correlations to the zero-shear viscosity [200, 201] and thus to

the athermal static nonaffinity. Finally, it remains to be seen whether connections

between nonaffinity and slowing down might provide insight into the glass transition

[159, 202–207].
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5.7 Appendix

5.7.1 Disordered network model

We consider the behavior of a bond-bending network [118] in a Newtonian solvent,

in which drag forces act only on network nodes. We derive network structures with

initial connectivity z0 ≈ 6 in 2D and z0 ≈ 10 in 3D from the contact networks of dense

packings of soft spheres, which are generated using protocols described in prior work

[79, 128, 139]. We then reduce the connectivity z to the desired value by selectively

removing bonds randomly chosen from the set of nodes with the highest coordination

number, yielding a network with a relatively homogeneous connectivity distribution

[79]. The energy of the network is

U =
µ

2

∑
ij

(`ij − `ij,0)2

`ij,0
+
κ

2

∑
ijk

(θijk − θijk,0)2

`ijk,0

in which µ is the bond stretching stiffness (units of energy / length), κ is the bending

rigidity (units of energy × length) acting between adjacent bonds, the instantaneous

and rest lengths of bond ij are `ij = rj − ri and `ij,0, the instantaneous and rest angle

between bonds ij and jk are θijk and θijk,0, and `ijk,0 = (`ij,0 + `jk,0)/2. We define the

rest lengths and angles such that U(γ0 = 0) = 0.

The node dynamics follow the over-damped, zero-temperature Langevin equation,

−∂U
∂ri
− ζ

(
dri
dt
− vf (ri)

)
= 0

in which ζ is the drag coefficient. Here, vf(ri) denotes the velocity of the solvent at
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the position of node i. Note that we are using a free-draining [201] approximation and

thus ignoring hydrodynamic interactions between nodes. We integrate this equation

using the Euler method with timestep ∆t = 10−3. For convenience, we set µ = ζ = 1

and vary κ̃ = κ/(µ`2
0). Note that for κ̃ = 0, the characteristic microscopic relaxation

time is τ0 = ζ`0/µ.

5.7.2 Stress relaxation at finite strain

We first obtain the minimum energy configuration of the network at applied shear

strain γ = γ0. Then, we apply a small, instantaneous affine shear strain step δγ, such

that the strain becomes γ = γ0 + δγ. Taking this as the initial state and assuming the

solvent is immobile (vf = 0) in this case, we allow the system to evolve according to

the equations of motion. We measure the shear stress σ(t) as a function of time as

the system evolves and compute the differential relaxation modulus,

K(γ0, t) = lim
δγ→0

σ(γ0 + δγ, t)− σ(γ0, t→∞)

δγ

Note that Kaff(γ0) ≡ K(γ0, t = 0) corresponds to the affine differential modulus,

and the system eventually settles to the equilibrium (long-time) differential modulus

K∞(γ0) ≡ K(γ0, t→∞), equivalent to that measured under quasistatic shear.

5.7.3 Small-amplitude oscillatory shear at finite strain

For small-amplitude oscillatory shear near the critical strain, the system exhibits

power-law scaling of the dynamic moduli over a range of frequencies bounded on the

lower end by the critical characteristic frequency ωc = |γ0 − γc|φ, governed by the

proximity to the critical strain, and on the upper end by the characteristic frequency

ω0 ≈ 1 above which the network behaves as a solid. We assume that the ratio

ω/ωc = ω|γ0 − γc|−φ governs the mechanics for a particular strain, in which case the
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differential modulus takes on the scaling form

K ′(ω) = |γ0 − γc|fH±
(
ω|γ0 − γc|−φ

)
in which, for x � 1, H−(c) ∼ x2 and H+(x) ∼ constant, while for x � 1 we must

have H±(x) ∝ xf/φ since K ′(ω) remains finite.

Since at the critical strain we have δΓ(ω) ∝ ω−λ/φ and K∗(ω) ∝ f/φ (i.e.

η∗(ω) ∝f/φ−1), the relation above implies f/φ− 1 = −λ/φ, or

f = φ− λ

as we find for the stress relaxation case. Note that in Ref. [126], Yucht et al. made

essentially the same argument relating the scaling behavior of the linear loss modulus

and nonaffinity for networks near the isostatic point.

5.7.4 Power balance

In the steadily oscillating regime (long after initiating the small-amplitude oscilla-

tory shear), the power injected in the external application of strain, averaged over a

single cycle, is

Pin = V
ω

2π

∫ t0+2π/ω

t0

γ̇ (δσ − ηf γ̇) dt

= V
ω

2π

∫ t0+2π/ω

t0

ωδγ cosωt (δγ [K ′ sinωt+K ′′ cosωt]− ηfωδγ cosωt) dt

=
1

2
V ωδγ2(K ′′ − ηfω)

The nonaffine displacement of node i is pNA
i (t) = uNA

i (ω) sin
(
ωt+ θNA

)
, and the

nonaffine velocity is ∂pNA
i /∂t = ωuNA

i (ω) cos
(
ωt+ θNA

)
. The system-wide instan-

taneous nonaffinity is δΓi(ω) =
∑

i

∥∥uNA
i (ω)

∥∥2
sin2(ωt + θNA)/(`2

0δγ
2). The power
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output, averaged over a single cycle, in dragging the nodes against the solvent is

Pout =
∑
i

ω

2π

∫ t0+2π/ω

t0

fp,i ·
(
∂pNA

i

∂t

)
dt

=
∑
i

ω

2π

∫ t0+2π/ω

t0

ζ

∥∥∥∥∂pNA
i

∂t

∥∥∥∥2

dt

=
∑
i

ω

2π

∫ t0+2π/ω

t0

ζ
∥∥uNA

i (ω)
∥∥2
ω2 cos2(ωt+ θNA)dt

=
1

2
ζω2

∑
i

∥∥uNA
i (ω)

∥∥2

=
1

2
Nω2ζ`2

0δγ
2δΓ(ω)

Since Pin = Pout, we have

K ′′(ω)− ηfω = ρωζ`2
0δΓ(ω)

in which ρ = N/V , hence

η′(ω)− ηf = ρζ`2
0δΓ(ω)

For a quasistatic shear strain step δγ, the static nonaffinity, in terms of the individual

static nonaffine displacements uNA
i,∞, is

δΓ∞ =
1

N`2
0δγ

2

∑
i

‖uNA
i,∞‖2

Note that since the static nonaffine displacement vector must be the same as the

frequency-dependent nonaffine displacement vector in the zero-frequency limit, i.e.

uNA
i,∞ = uNA

i (ω → 0), we have δΓ∞ = δΓ(ω → 0). Thus, we can write the zero-shear

viscosity η0 = η′(ω → 0) in terms of the static nonaffinity as

η0 − ηf = ρζ`2
0δΓ∞
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5.7.5 Relaxation time

We extract τc from the slope, on a log-linear plot, of the terminal exponential

decay of (δσ(t)− δσ∞)/δσ(0) vs t, as indicated in the inset for γ0 < γc. Specifically,

we calculate the slope of the final n = 5 points exceeding a sufficiently small threshold

of (δσ(t)− δσ∞)/δσ(0) = 10−6.

Another reasonable way of computing the relaxation time is (see Ref. [163])

τc = lim
ω→0

K ′(ω)−K∞
ωK ′′(ω)

≡ lim
ω→0

(K ′(ω)−K∞) /ω2

η′(ω)

which we can express in terms of K(t). We can compute the dynamic moduli from

the relaxation modulus as [208]

K ′(ω) = K∞ + ω

∫ ∞
0

sin(ωt) [K(t)−K∞] dt

and

K ′′(ω) = ω

∫ ∞
0

cos(ωt) [K(t)−K∞] dt

Thus

lim
ω→0

K ′(ω)−K∞
ω2

=

∫ ∞
0

t(K(t)−K∞)dt

and

lim
ω→0

K ′′(ω)/ω =

∫ ∞
0

(K(t)−K∞)dt

Plugging these in, we find

τc =

∫∞
0
t(K(t)−K∞)dt∫∞

0
(K(t)−K∞)dt

=

∫∞
0
t(K(t)−K∞)dt

ρζ`2
0δΓ∞
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5.7.6 Finite size effects

We expect to observe the scaling relationships described in the main text when

the correlation length is smaller than the system size. If τc diverges as |γ0 − γc|−φ in

the L→∞ limit, then we expect

τc ∝ W φ/νA(L1/ν(γ0 − γc))

implying that we should observe τc(γc) ∝ Lφ/ν , a plot of τcL
−φ/ν vs. L1/ν(γ0 − γc) for

varying L and γ0 should yield a collapse. For the static differential nonaffinity, prior

work has shown [128] δΓ ∝ Lλ/νB(L1/ν(γ0 − γc)), so we expect the same finite-size

scaling for the zero-shear viscosity,

η0 − ηf ∝ Lλ/νC(L1/ν(γ0 − γc))

such that η0(γc)− ηf ∝ Lλ/ν . Likewise, we should see a collapse of (η0 − ηf )L−λ/ν vs.

L1/ν(γ0 − γc) for varying L and γ0. Here, A, B, and C are scaling functions.

5.7.7 Nonaffinity and viscosity in soft sphere suspensions

We will now briefly explore the response of dense suspensions of frictionless soft

spheres in two and three dimensions near the onset of rigidity (jamming). As noted in

the main text, prior work [171] has pointed out a connection between the zero-shear

viscosity and quasistatic nonaffine velocity fluctuations in suspensions under steady

shear. To highlight the connection between nonaffinity and viscosity we discussed

in the main text (Eq. 5.2), we will demonstrate here that the static differential

nonaffinity is equivalent to, and diverges as φ0 → φj with the same exponent as, the

excess viscosity.

These systems rigidify at a d-dimensional critical sphere volume fraction φj, with
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φj,2D ≈ 0.84 and φj,3D ≈ 0.64. Under steady shear conditions, dense suspensions at

volume fractions below φj these have been shown to exhibit a zero-shear viscosity

that scales with the volume (or area) fraction as η0 ∝ (φj − φ0)−β, in which β is an

exponent generally reported in the range 2–2.8 in both simulations [162, 209–213] and

experiments [214, 215].

We consider N spheres with diameters split evenly between di ∈ (d0, 1.4d0) to

avoid crystallization [82]. The energy of a configuration with positions ri is

U =
µ

2

∑
i

∑
j>i

(1− ‖rj − ri‖/dij)2 Θ (1− ‖rj − ri‖/dij) (5.7)

in which dij = (di + dj)/2 and Φ is the Heaviside step function. To prepare initial

configurations, we first randomly place the spheres in a d-dimensional box of side

length 3L and quasistatically compress the system in small steps to a final side

length L, chosen to yield the specified sphere volume fraction φ0. Then, to produce a

configuration consistent with slowly applied steady shear strain, we quasistatically

apply (again in small steps) an initial simple shear of γ0 = 5. Sample configurations

are shown in Fig. 5.4.

Using the pre-sheared initial configuration, we follow the same stress relaxation

procedure described earlier for networks, with δγ = 10−5, and compute both the

excess zero-shear viscosity η0 − ηf and static differential nonaffinity δΓ∞ as a function

of volume fraction. For both d = 2 and d = 3, we observe values of the scaling

exponent β consistent with the range reported in the literature (see Fig. 5.5a) and find

that the relationship between zero-shear viscosity and static differential nonaffinity

provided in Eq. 5.2, i.e. η0 − ηf = ρζ`2
0δΓ∞, is consistently satisfied (see Fig. 5.5b).

These results suggest that the static differential nonaffinity, which can be inexpensively

computed by energy minimization after a single small shear strain step, could provide a

complementary route for concretely determining the viscosity divergence exponent β in
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this and other related systems (e.g. suspensions of frictional spheres [216]). Note that

a different viscosity divergence exponent β ≈ 1.5 is observed for initial configurations

generated without pre-shear [163]. Because the static differential nonaffinity necessarily

scales with β irrespective of preparation, our results suggest that the distinction

in scaling between isotropically compressed and pre-sheared suspensions is due to

differences in their nonaffine response.

Figure 5.4: (a) Radially bidisperse assemblies of N = 1000 spheres in (left) d = 2 with area
fraction φ0 = 0.84 and (right) d = 3 with volume fraction φ0 = 0.64. Images prepared using
Ovito [217].
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Figure 5.5: (a) Excess zero-shear viscosity η0 − ηf and scaled static differential nonaffinity
δΓ∞ for N spheres in two and three dimensions as a function of volume (or area) fraction φ0,
plotted with fits (solid lines) proportional to (φj − φ0)−β as indicated above each column. Each
point represents a measurement for a randomly generated sample, with 10 samples for each φ0.
Here, we use φj,2D = 0.845 and φj,3D = 0.645. (b) Eq. 5.2 is satisfied for both d = 2 and d = 3.
Data are the same as in (a).
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Chapter 6

Nonlinear Poisson effect governed by

mechanical critical transition

This chapter is adapted from Ref. [28]:

Jordan L. Shivers, Sadjad Arzash, and Fred C. MacKintosh. Nonlinear
Poisson Effect Governed by a Mechanical Critical Transition. Physical Review
Letters, 124 (3): 038002, 2020.

6.1 Abstract

Under extensional strain, fiber networks can exhibit an anomalously large and

nonlinear Poisson effect accompanied by a dramatic transverse contraction and volume

reduction for applied strains as small as a few percent. We demonstrate that this

phenomenon is controlled by a collective mechanical phase transition that occurs at

a critical uniaxial strain that depends on network connectivity. This transition is

punctuated by an anomalous peak in the apparent Poisson’s ratio and other critical

signatures such as diverging nonaffine strain fluctuations.

6.2 Introduction

When an elastic body is subjected to an infinitesimal strain ε‖ along one axis,

the corresponding strain ε⊥ in the transverse direction(s) defines Poisson’s ratio
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ν = −ε⊥/ε‖ [218, 219]. Although this ratio is constrained to the range ν ∈ [−1, 1/2]

for isotropic materials in 3D, there have been numerous recent reports of anomalously

large apparent Poisson’s ratios exceeding 1/2 in a variety of fibrous materials at small

strain, including felt [25] and networks of collagen [21, 23, 29, 220, 221] and fibrin

[24, 221]. This corresponds to an anomalous reduction in volume under extension, in

apparent stark contrast to the linear behavior of all isotropic materials, which strictly

maintain or increase their volume under infinitesimal extension. This is even true of

auxetic materials with ν < 0 [26, 78, 125, 222]. A volume reduction under uniaxial

extension can have dramatic effects in living tissue, such as the development of highly

aligned, stiffened network regions with reduced porosity between contractile cells in

the extracellular matrix [23, 29, 31, 223]. Although it has been argued that this effect

is related to stiffening and other nonlinear phenomena in such networks [25, 27, 29], it

remains unclear to what extent this anomaly is controlled by network architecture

and filament properties.

Here, we show that the anomalous Poisson’s ratio of fiber networks is governed by

a mechanical phase transition induced by applied axial strain. Using simulations of

disordered networks in 2D and 3D, we show that this phenomenon is critical in nature,

with diverging strain fluctuations in the vicinity of the transition and a corresponding

maximum of the apparent Poisson’s ratio. Connecting with recent studies of mechanical

criticality in athermal networks [48, 50, 68, 128, 140, 141], we demonstrate that this

maximum occurs at a connectivity-controlled strain corresponding to a macroscopic

crossover between distinct mechanical regimes, with large-scale, collective network

rearrangements as a branched, system-spanning network of tensile force chains develops.

Our results highlight the influence of collective properties on the nonlinear mechanics

of athermal networks and suggest that controlling connectivity could enable the design

of tailored elastic anomalies in engineered fiber networks.

Recent work has demonstrated that the strain-stiffening effect in crosslinked net-
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Figure 6.1: (a) Under applied extensional strain ε‖ (red arrow) with free transverse strains,
subisostatic (z < zc) athermal fiber networks transition from a soft, bending-dominated regime
(H ∝ κ, floppy in the limit of κ → 0) to a stiff, stretching-dominated regime (H ∝ µ) at a
critical applied strain ε‖,c (dotted line) that increases with decreasing z. As z → zc, ε‖,c → 0. (b)
The incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ exhibits a peak at the critical strain, indicated
by the dotted line. The black curve corresponds to a 2D packing-derived network with κ̃ = 10−5

and z = 3.2. Network configurations corresponding to the numbered circles are shown in (c).
Here, the black box represents the deformation of the initially square periodic boundaries. Bonds
under greater tension f than the average, 〈f〉, are colored blue with thickness proportional to
f/〈f〉.

works of stiff athermal semiflexible biopolymers, such as collagen, which can be

modeled as elastic rods with bending modulus κ and stretching modulus µ, can be

understood as a mechanical phase transition between a bending-dominated regime

and a stretching-dominated regime at an applied shear or extensional strain governed
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by the average network connectivity z [50, 68, 128, 134]. Despite being athermal,

such networks exhibit classic signatures of criticality near this transition, including

power-law scaling of the elastic moduli with strain and system-size-dependent nonaffine

strain fluctuations indicative of a diverging correlation length [50, 128]. In the limit of

κ→ 0, stiffening corresponds to the rearrangement of the network to form a marginally

stable, highly heterogenous network of branched force chains [87, 106] similar to the

force networks observed in marginal jammed packings under compressive or shear

strain [121–123]. Prior work has considered this rigidity transition in networks under

applied simple shear [50, 128, 140, 141] or bulk strain [134, 140, 141], with quantitative

agreement between shear experiments on collagen and simulations [98].

We find that an analogous collective mechanical phase transition controls the

mechanics of networks under uniaxial strain with free orthogonal strains. In athermal

semiflexible polymer networks, strain-stiffening and the nonlinear Poisson effect occur

at a critical extensional strain controlled by network connectivity, corresponding to

a transition from a bending-dominated regime to one dominated by stretching. The

expected phase diagram in connectivity-strain space is sketched in Fig. 6.1a. As

applied strain drives a network to approach and cross the critical strain boundary,

the network’s mechanics become stretching-dominated and the resultant nonlinear

strain-stiffening induces dramatic transverse contraction coinciding with a peak in the

incremental Poisson’s ratio ν̃ (see Fig. 6.1b). Concurrent with this transition, the

system exhibits nonaffine strain fluctuations which grow by orders of magnitude as

criticality is approached (either by decreasing κ or approaching the critical strain). We

demonstrate that this phenomenon occurs irrespective of the details of the underlying

network structure, consistent with past observations of networks under simple shear

[50, 87]. Our results suggest that the dramatic nonlinear Poisson effect observed in

collagen and fibrin gels is macroscopic evidence of this critical rigidity transition.
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6.3 Models

We consider 2D and 3D disordered networks comprising interconnected 1D Hookean

springs with stretching modulus µ, with additional bending interactions with modulus

κ between adjacent bonds. To explore the influence of network structure on the

transition, we test a variety of network geometries, including Mikado networks [40],

2D and 3D jammed packing-derived (PD) networks [87], 3D Voronoi networks [27],

and 3D random geometric graph (RGG) networks [5] (see Appendix, Section 6.7).

The network Hamiltonian H = Hs +Hb consists of a stretching contribution,

Hs =
µ

2

∑
ij

(`ij − `ij,0)2

`ij,0
, (6.1)

in which the sum is taken over connected node pairs ij, `ij is the length of the bond

connecting nodes i and j, and `ij,0 is the corresponding rest length, as well as a bending

contribution,

Hb =
κ

2

∑
ijk

(θijk − θijk,0)2

`ijk,0
. (6.2)

in which the sum is taken over connected node triplets ijk, θijk is the angle between

bonds ij and jk, θijk,0 is the corresponding rest angle, and `ijk,0 = (`ij,0 + `jk,0)/2. For

Mikado networks, which we designate to have freely hinging crosslinks, the sum in Eq.

6.2 is taken only over consecutive node triplets along initially collinear bonds. Following

prior work, we set µ = 1 and vary the dimensionless bending rigidity κ̃ = κ/(µ`2
c)

[87, 95], where `c is the average bond length. Since the volume fractions of biopolymer

gels are typically 1% or less [98, 224], we do not include excluded volume effects

in the results presented below, although we examine their effects in Appendix (see

Section 6.7). All network models utilize generalized Lees-Edwards periodic boundary

conditions [85, 87], which specify that the displacement vectors between each network

node and its periodic images transform according to the deformation gradient tensor
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Λ. We consider purely extensional strain, with Λii = 1+εi, where εi is the strain along

the i-axis relative to the initial configuration. Whereas the primary results of this

paper utilize periodic boundaries, we have also performed simulations of non-periodic

networks with fixed upper and lower boundaries. We find that fixed boundaries of

width equal to or greater than the sample length can suppress the apparent Poisson’s

ratio (see Appendix, Section 6.7). The normal stress components σii are computed as

σii = (∂H/∂εi)/V , in which V is the system’s volume. Unless otherwise stated, all

curves correspond to an average over 15 samples.

To measure the nonlinear Poisson effect, we apply quasi-static longitudinal exten-

sional strain ε‖ ≡ ε1 in small increments δε‖ = ε‖,n − ε‖,n−1 and, at a given strain,

first allow the system to reach mechanical equilibrium by minimizing the network’s

Hamiltonian using the L-BFGS algorithm [225]. After each extensional strain step, we

simulate free transverse boundaries by incrementally varying the transverse strain(s)

ε2 (and ε3 in 3D) in order to reduce the corresponding transverse normal stress com-

ponent(s) to zero, i.e. |∂H/∂εi| ≈ 0. In 2D the single transverse strain is ε⊥ ≡ ε2,

whereas in 3D the stresses along the two transverse axes are relaxed independently

and we define the transverse strain, for the purposes of computing the incremental

Poisson’s ratio, as ε⊥ ≡ (ε2 + ε3)/2. For orientationally isotropic network models,

ε2 and ε3 are equivalent in the limit of large system size. The differential Young’s

modulus Ẽ is computed as Ẽ = ∂σ‖/∂ε‖.

6.4 Results

Subisostatic athermal networks undergo a transition from a bending-dominated

regime to a stiff stretching-dominated regime at a critical applied shear or extensional

strain [97, 226]. Recent work showed that athermal networks under extensional strain

with free transverse strains, which we consider in this work, undergo a similar transition
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from a bending-dominated to stretching-dominated regime corresponding with strain-

stiffening [27]. To examine the influence of bending rigidity on this transition, we

first consider 2D packing-derived networks with fixed connectivity z = 3.2 < zc and

varying reduced bending rigidity κ̃. In Fig. 6.2a, we plot the relaxed transverse strain

ε⊥ as a function of applied longitudinal extensional strain ε‖, with the corresponding

incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ shown in Fig. 6.2b. The fraction of the total

network energy due to bending interactions Hb/H as a function of strain is shown in

Appendix. Networks with high κ̃ deform approximately linearly up to relatively large

applied strains, with minimal strain-dependence of ν̃. In contrast, networks with low κ̃

exhibit similar linear deformation (with ν̃ < 1) in the limit of small applied strain, but

under increasing applied strain these undergo a transition to a much stiffer stretching-

dominated regime, resulting in significant transverse contraction and thus a very large

apparent Poisson’s ratio. At larger strains, within the stretching-dominated regime,

the networks again deform approximately linearly with an incremental Poisson’s ratio

ν̃ < 1. The transition occurs at a critical applied extension εc, which we define as

the strain corresponding to the inflection point in the ε⊥ vs. ε‖ curve as κ→ 0. By

definition, this corresponds to a peak in ν̃, which grows with decreasing κ̃.

This unusual nonlinear Poisson effect results from the asymmetric nonlinear me-

chanics of these networks, which stiffen dramatically under extensional strain but

remain soft under compression [23, 25]. Compressing a semiflexible polymer network

induces normal stresses proportional to the bending rigidity κ of the constituent

polymers, whereas sufficient extension induces normal stresses proportional to the

polymer stretching modulus µ [226]. An athermal network under uniaxial extension

with fixed transverse strains will exhibit an increase in the magnitude of its normal

stresses from σii ∝ κ to σii ∝ µ at the critical strain, both along the strain axis (σ‖)

and the transverse axes (σ⊥). Relaxing the transverse boundaries to satisfy σ⊥ = 0

requires contraction along the transverse axes, which necessarily reduces the stiff
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Figure 6.2: (a) Relaxed transverse strain ε⊥ as a function of applied extensional strain ε‖
for 2D packing-derived networks with z = 3.2 and varying κ̃. For large κ̃, networks deform
linearly up to relatively large strains. The gray dashed line corresponds to constant volume,
∆V ≡ V − V0 = 0. In the limit of low κ̃, networks deform linearly at low strains, with a linear
Poisson’s ratio less than 1, but exhibit a significant increase in transverse contraction at a critical
strain ε‖,c, indicated by the dotted black line. (b) The magnitude of the incremental Poisson’s
ratio ν̃ = −∂ε⊥/∂ε‖ peaks at the critical strain and increases with decreasing κ̃. (c) At the
critical strain, we observe a corresponding peak in the nonaffine strain fluctuations δΓ which
increases in magnitude as κ̃ is decreased.

stretching-induced contributions (∝ µ) until these are balanced by softer, compression-

induced contributions (∝ κ). The amount of transverse contraction in the vicinity of

the critical strain thus increases with µ/κ.

Past work showed that athermal networks under applied shear strain exhibit

diverging nonaffine strain fluctuations at the critical strain, in the limit of κ̃ → 0,
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indicative of a diverging correlation length [50, 52, 128]. Concurrent with the strain-

driven transition in this work, we observe similarly large internal strain fluctuations.

We use an analogous measure of the strain fluctuations for the deformation gradient

tensor Λ defined above. For the nth strain step, the incremental applied extensional

strain δε‖ = ε‖,n − ε‖,n−1 and relaxation of the transverse strain(s) transforms the

deformation gradient tensor from Λn−1 to Λn. We compute the resulting differential

nonaffinity δΓ as

δΓ =
1

`2
c

(
δε‖
)2

〈∥∥δui − δuaff
i

∥∥2
〉

(6.3)

in which the average is taken over all nodes i, `c is the initial average bond length,

δui = ui,n−ui,n−1 is the actual displacement of node i after the extensional strain step

and transverse strain relaxation, and δuaff
i is the displacement of node i corresponding

to an affine transformation from the previous configuration at strain state Λn−1 to the

new strain state Λn. Consistent with prior work examining networks under shear strain

[128], we find that increasing κ̃ results in increasingly affine deformation (decreasing

δΓ), whereas in the low-κ̃ limit we observe a peak in δΓ at the critical strain which

grows with decreasing κ̃ (see Fig. 6.2c).

For athermal subisostatic networks under applied simple shear strain, the critical

strain is governed by the average network connectivity z [50, 52, 79], with the critical

strain decreasing to zero as z approaches the Maxwell isostatic value zc = 2d , where

d is the dimensionality [46]. As sketched in our hypothesized phase diagram (see Fig.

6.1a), we expect z to similarly control the critical strain for networks under extensional

strain with free orthogonal strains. In Fig. 6.3, we plot the incremental Poisson ratio

ν̃ as a function of ε‖ for several network geometries in 2D and 3D with varying z.

While the precise location of the critical strain for a given connectivity is sensitive to

the choice of network structure, we find that all networks tested exhibit behavior that

is qualitatively consistent with the proposed phase diagram, with a critical strain ε‖,c

that decreases as z → zc.
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Figure 6.3: Incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ as a function of applied extensional
strain ε‖ for various 2D and 3D network structures, as labeled in the top right of each panel,
with varying connectivity z. In all networks, the critical strain ε‖,c, corresponding to the peak in
ν̃, increases with decreasing z.

We also explicitly map out a phase diagram for packing-derived networks in 2D. In

Fig. 6.4a, we plot both the incremental Poisson’s ratio ν̃ and differential nonaffinity δΓ

for 2D PD networks as a function of applied strain over a range of z values up to the

2D isostatic point, zc = 4. Both quantities become maximal at a critical strain that

approaches 0 as z → zc. Near zc, the critical strain grows as ε‖,c ∝ zc − z, consistent

with prior results [79, 134] (see Appendix, Section 6.7). We plot the corresponding

differential Young’s modulus Ẽ = ∂σ‖/∂ε‖ as a function of z and ε‖ in Fig. 6.4b,

demonstrating that the transition of the network from the soft, bending-dominated

regime (Ẽ ∝ κ) to the stiffer, stretching-dominated regime (Ẽ ∝ µ) coincides with

peaks in both the incremental Poisson’s ratio and the differential nonaffinity (Fig.

6.4a). Further, we find that the differential Young’s modulus scales as a power law
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Figure 6.4: (a) Incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ as a function of applied extensional
strain ε‖ and average connectivity z for 2D packing-derived networks with W = 100 and κ̃ = 10−5.
Inset: For a given connectivity z, the differential nonaffinity δΓ exhibits a peak coinciding with
the peak in the incremental Poisson ratio ν̃. (b) Differential Young’s modulus Ẽ = ∂σ‖/∂ε‖ for
the same networks as in (a). Inset: Corresponding stretching energy fraction Hs/H.

Ẽ ∝
∣∣ε‖ − ε‖,c∣∣f above the critical strain (see Appendix, Section 6.7).
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6.5 Discussion

We have demonstrated that the nonlinear Poisson effect observed in subisostatic

networks is a direct consequence of a strain-driven collective mechanical phase tran-

sition. Whereas the large apparent Poisson’s ratios observed in such networks at

finite strains can be qualitatively understood as resulting from their highly asymmet-

ric mechanical properties, i.e. that they stiffen dramatically under finite extension

but remain comparatively soft under compression, as discussed conceptually in Refs.

[23, 25], we have demonstrated that this asymmetry becomes maximized at a critical

phase boundary controlled by strain and connectivity. At this boundary, a network

exhibits diverging strain fluctuations as it collectively rearranges to transition from a

soft, bending-dominated regime to a stiff, stretching-dominated regime. In the latter,

marginally stable state, the mechanics become dominated by an underlying branched

network of bonds under tension, which generates tensile transverse normal stresses that

drive the lateral contraction of the network against the weaker compression-induced

stresses. This results in an apparent Poisson’s ratio that exceeds 1/2 at the phase

transition and grows as a function of the relative magnitude the stiff and soft con-

tributions, µ/κ. Whereas we have focused on the T = 0 limit with an eye towards

networks such as collagen, we note that finite temperature can stabilize otherwise

floppy networks [227, 228] and would be expected to reduce the peak in the differential

Poisson’s ratio in a manner similar to finite κ.

Using simulations of a variety of network architectures in 2D and 3D, we have

shown that this effect is robustly controlled by connectivity and occurs independently

of the precise underlying network structure. Further, we have demonstrated critical

scaling of the differential Young’s modulus (see Appendix, Section 6.7) similar to

what has been shown for the shear modulus of collagen networks [50]. This suggests

that experimental measurements of the differential Young’s modulus of collagen gels

under uniaxial strain should quantitatively fit the predicted scaling form, with a given
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sample exhibiting a peak in the incremental Poisson’s ratio at the transition point.

Further work could enable prediction of the local stiffness in the extracellular matrix

based on the observed local strain asymmetry.
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6.7 Appendix

Network generation

After generating each initial network structure as described below, we reduce the

connectivity z to the desired value by randomly removing bonds and any resulting

dangling ends.

Mikado networks [40, 116] are prepared by depositing fibers of length L with

random locations and orientations into a 2D periodic square unit cell of side length

W and adding freely hinging crosslinks at all fiber intersections. We use L = 4 and

W = 30 and continue depositing fibers until the average coordination number, after

the removal of dangling ends, is z ≈ 3.6. This yields an average crosslink density of

L/`c ≈ 11, where `c is the average distance between crosslinks. We impose a minimum

segment length `min = W/1000.

2D and 3D packing-derived networks are prepared as in prior work [87]. For 2D

PD networks, we randomly place N = W 2 radially bidisperse disks with r ∈ {r0, φr0}
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in a periodic square unit cell of side length W and incrementally increase r0 from 0,

allowing the system to relax at each step, until the packing becomes isostatic and

develops a finite bulk modulus. We use φ = 1.4 to avoid long-range crystalline order

[82]. At this point, we generate a contact network between overlapping disks. For

3D PD networks, we follow the same procedure beginning with N = W 3 radially

bidisperse spheres, also with r ∈ {r0, φr0} and φ = 1.4, in a periodic cubic unit cell

of side length W . We use W = 20 in 3D and W = 100 in 2D. For sufficiently large

systems, this yields a network with initial coordination number z ≈ 2d [47, 81, 117],

in which d is the dimensionality.

We generate 3D Voronoi networks by randomly distributing N seed points in a

periodic cubic unit cell of side length W , from which we generate a Voronoi diagram

using the CGAL library [229]. We choose N so that the final network has roughly W 3

nodes, with W = 15. These have initial average coordination number z = 4.

Three-dimensional random geometric graph (RGG) models have been shown to

capture the micromechanics of collagen and fiber networks [5]. Following Ref. [5], we

generate RGGs of N = W 3 vertices in a periodic box of side length W , where each

pair of nodes is connected with probability Pc ∝ e−`/L/`2, where ` is the distance

between two vertices and L = 1 is the length scale of a typical bond. We impose a

minimum bond length of `min = 0.5. We generate RGG networks with W = 20 and

initial average coordination number z = 4.

Midpoints

The amount of contraction induced by the onset of stiffening depends on the

resistance of the network to lateral compression. Mikado and 2D PD networks with

relatively high values of z exhibit less dramatic contraction upon transitioning to the

stretching-dominated regime than those with lower z. This is a consequence of the

fact that more dilute (lower z) networks have fewer highly connected regions within
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them and are thus less resistant to compression than more highly connected networks.

To verify that this is the case, in Fig. 6.5, we consider the same Mikado structures

as in Fig. 3, in which we have now added a midpoint hinge to each bond in order to

allow the buckling of individual bonds with the same bending energy penalty as is

used between adjacent bonds. While the location of the transition in strain is still

controlled by connectivity, networks with midpoints contract more dramatically at the

critical strain than those without midpoints (for fixed κ̃), with larger corresponding

peaks in ν̃. This is because the normal stress induced by transverse compression in

networks with midpoints is strictly proportional to the bending rigidity κ, whereas

in networks without midpoints there can be additional, stronger contributions (∝ µ)

from locally stiff regions at large compression levels.

Figure 6.5: Transverse strain ε⊥ as a function of applied extensional strain ε‖ for Mikado
networks with κ̃ = 10−5 and varying connectivity z (a) without buckling of individual bonds
and (b) with buckling of individual bonds, in which an extra node is added at the midpoint
of each bond. The dashed line indicates the isochoric transverse strain, with the region above
corresponding to an increase in volume (∆V > 0) and the region below corresponding to a
decrease in volume (∆V < 0). Inset: Incremental Poisson’s ratio ν̃ as a function of ε‖ for
networks with midpoints. The corresponding plot for Mikado networks without midpoints is
shown in Fig. 3a.
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Energy contributions for networks with fixed z and varying κ̃

In Fig. 6.6, we plot the fractional contribution of bending to the total network

energy, Hb/H, for a 2D packing-derived network with varying κ̃. In the low-κ̃ limit, we

observe a clear transition from a bending-dominated to stretching-dominated regime

at the critical strain, corresponding to the maximum value of the incremental Poisson’s

ratio ν̃.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Figure 6.6: Bending energy fraction Hb/H for a 2D packing-derived network with z = 3.2,
W = 100 and varying κ̃. The dotted line represents the critical strain ε‖,c corresponding to the
peak in the incremental Poisson’s ratio.

6.7.1 Scaling of the stiffness and nonaffinity

For subisostatic networks in the limit of small applied strain ε‖, the differential

Young’s modulus Ẽ = ∂σ‖/∂ε‖ is proportional to the bending rigidity κ̃. Above the

critical applied strain ε‖,c, Ẽ is independent of κ̃ and scales as a power law with respect

to the distance (along the strain axis) to the critical strain, i.e. Ẽ ∝ |∆ε‖|f , where

∆ε‖ = ε‖ − ε‖,c. Following prior work [50], we can capture both regimes with the
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scaling form

Ẽ
V

V0

∝ |∆ε‖|fG±
(

κ̃

|∆ε‖|φ

)
(6.4)

in which the scaling function G± has branches corresponding to positive and negative

values of ∆ε‖, and the factor V/V0 corrects for the change in Ẽ due to the change in

the system’s volume V from the initial volume V0. In Fig. 6.7a, we show stiffening

curves for a large packing-derived network with varying κ̃ and demonstrate scaling

collapse according to the above scaling form with f = 0.55 and φ = 2.5 (see Fig. 6.7b).
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Figure 6.7: (a) Stiffening curves for a 2D packing-derived network with varying κ, z = 3.2,
W = 140. (b) Collapse of the curves in (a) according to Eq. 6.4 with exponents f = 0.55 and
φ = 2.5.

Recent work has described a hyperscaling relation between the stiffening exponent

f , the dimensionality d, and the correlation length exponent ν, [128]

f = dν − 2, (6.5)
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and predicts that, at the critical strain, the differential nonaffinity should scale with

system size W as

max(δΓ) ∝ W (φ−f)/ν . (6.6)

Determining ν from Eq. 6.5 using d = 2 and f = 0.55 (from the prior scaling collapse

of Ẽ), we observe good agreement between measured values of max(δΓ) and the

predicted scaling of the differential nonaffinity with system size (see Fig. 6.8).
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Figure 6.8: In the low-κ̃ limit, the magnitude of the differential nonaffinity at the critical
strain, max(δΓ), grows with increasing system size W as max(δΓ) ∝W (φ−f)/ν (solid line), with
f = 0.55 and φ = 2.5 obtained from the scaling collapse of the differential Young’s modulus and
ν = (f + 2)/d with dimensionality d = 2, as derived in Ref. [128]. These data correspond to
averages over 2D packing-derived networks with z = 3.2 and κ̃ = 10−6.

6.7.2 Boundary conditions

Whereas we have exclusively considered periodic systems in this work to avoid

boundary effects, we note that real systems are of course non-periodic. In experiments,

strain is typically applied via fixed upper and lower boundaries, resulting in necking.

Properly measuring transverse strain as a consequence of applied strain in experiments

requires a sample with a sufficiently large aspect ratio (ratio of length along the applied
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strain axis to width along the transverse axes) to mitigate the influence of boundary

effects. Prior experimental work [24] has addressed this issue by considering the strain

within the necked region of a stretched cylindrical sample with a large aspect ratio.

For a non-periodic simulated network with a sufficiently large aspect ratio, we expect

that the strains in the center of the necked region should quantitatively agree with the

corresponding strain in a sample with periodic boundary conditions. Smaller aspect

ratios, however, are expected to reduce the apparent Poisson’s ratio.

To test these assumptions, we generated periodic packing-derived according to the

methods described in Section I above, with the initial network structure generated

from N = 10000 radially bidisperse disks in a periodic box of aspect ratio α with

initial dimensions Ly = αLx, where LxLy = N . After diluting the resulting network

to z = 3, we cut all boundary-crossing bonds to yield a non-periodic network. We

then designated the nodes on the top and bottom boundaries of the network as “fixed,”

and applied quasistatic strain to the sample by deforming the “fixed” nodes affinely

according to the desired applied extension ε‖ and minimizing the energy of the network

at each applied strain. This results in a “necked” network configuration, as shown in

Fig. 6.9, with the amount of apparent necking increasing with the aspect ratio. To

obtain a coarse-grained estimate of the transverse strain within the necked region, we

first bin the node coordinates according to their y-values into 100 equally spaced bins

spanning the height of the network. We then measure the width of the network in

each height bin as the difference between the maximum and minimum x-coordinates

of the nodes within the bin. and measure the transverse strain ε⊥ = w/w0 − 1 as

the fractional change in the average width w of the middle 10% of bins (the center of

the necked region) with respect to its initial value w0. In Fig. S5c, we demonstrate

that this effective transverse strain approaches that achieved with periodic boundary

conditions as we increase the aspect ratio of the network sample. This indicates that

“smearing out” of the phase transition due to necking does indeed occur if the aspect
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ratio of the sample is small, resulting in a smaller apparent Poisson’s ratio (as shown

in Fig. 6.9d), but that the results become equivalent when the aspect ratio is increased

sufficiently (as in the experiments of Ref. [24]). We note that this results in a slight

downward shift of the apparent critical strain, which can be understood as a result of

the higher effective extensional strain near the center of a sample with fixed boundary

conditions for a given global extensional strain.
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Figure 6.9: (a-b) Non-periodic networks with fixed nodes (solid black circles) at the upper
and lower boundaries exhibit necking under applied extensile strain. We consider networks with
κ = 10−4, generated from packings of N = 10000 bidisperse disks in periodic boxes of initial
width Lx and height Ly, in which LxLy = N , with varying aspect ratio α = Ly/Lx. These
networks are then diluted to z = 3 and made non-periodic by cutting bonds that cross the
boundaries. We affinely deform the “fixed” nodes by extensile strain ε, and the energy of the
network is subsequently minimized with the positions of the “fixed” nodes held constant. The
transverse strain ε⊥ is measured as the change in width of the center of the network, as described
above, as a function of applied extensile strain ε‖. (c) We find that as the sample aspect ratio is
increased, the ε⊥ vs. ε‖ curves for non-periodic samples approach the corresponding curve for a
periodic networks with Lx = Ly. (d) Likewise, the incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖
approaches that of the periodic samples. These data correspond to an average over 15 samples
each.
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6.7.3 Excluded volume effects

We have thus far ignored excluded volume effects, as these are generally unimportant

for networks of filamentous proteins such as collagen and fibrin due to the very low

network volume fractions involved (typically less than 1%) and the suppressed bending

fluctuations of such fibers. Especially for collagen networks, models such as the present

one have been shown to be quantitative and predictive, both in the linear regime and

even far into the nonlinear regime.

To explore the influence of excluded volume effects on the nonlinear Poisson

effect, we now consider simulations of 2D packing-derived networks with Nm equally

spaced midpoint nodes on each bond, with and without including harmonic repulsive

interactions between nodes (in this case, each node is treated as a repulsive disk with

radius r = 0.8/(2(Nm + 1)) and repulsive spring constant kr = 1, which is sufficiently

large to prevent any bonds from interpenetrating at the strains we are considering).

In Fig. 6.10a-b, we show images of sections of a network with Nm = 5 midpoints per

bond.

In Fig. 6.10c, we show strain curves for networks of side length L = 60 with

connectivity z = 3.2 and bending rigidity κ = 10−5, in which we vary the number of

midpoints per bond Nm between 1 and 5. For networks without repulsive interactions,

the number of midpoints has essentially no effect on the strain curves (Fig 6.10c) or

the corresponding incremental Poisson ratio (Fig 6.10d). When repulsive interactions

are included, the excluded volume effect is significant for small Nm (i.e. large node

radius and large effective bond thickness), but it becomes much less significant as

Nm is increased. Further increasing Nm would result in the curves more closely

resembling those of networks without repulsive interactions. For node radius r, we

can approximate bonds as rods of width 2r, so we can estimate an effective area

fraction φ for a network with 2D line density ρ (bond length per area) and node radius

r as φ = 2ρr. For connectivity z = 3.2, the 2D line density of our PD networks is
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ρ ≈ 1.4, so we have an effective area fraction of φ ≈ 0.18 for Nm = 5 and φ ≈ 0.56 for

Nm = 1. We note that these values are significantly larger than the volume fractions

of experimentally tested networks (φ < 0.005) [52, 98]. Since the effects of excluded

volume in our 2D simulations are already quite small at the relatively large area

fraction of φ = 0.18, we conclude that simulations of networks without excluded

volume effects are reasonable for this study.
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Figure 6.10: Portions of a 2D packing-derived network with κ̃ = 10−5, z = 3.2, and Nm = 5
midpoints per bond with individual nodes acting as repulsive disks at (a) ε‖ = 0 and (b) ε‖ = 0.3.
(c) Transverse strain ε⊥ as a function of applied extensile strain ε‖ for networks with W = 60,
z = 3.2, and κ̃ = 10−5, in which the number of midpoints Nm is varied, with and without
treating individual nodes as repulsive disks with radius r = 0.8/(2(Nm + 1)). (d) Incremental
Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ for the same networks.
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6.7.4 Growth of the critical strain with distance from isostaticity

In Fig. S7, we plot the critical strain ε‖,c as a function of the distance to the

isostatic point, zc − z, for 15 samples of 2D packing-derived networks with W = 100

and κ̃ = 10−5. Here we determined the critical strain ε‖,c for each sample as the

inflection point of the stretching energy fraction Hs/H when plotted as a function of

ε‖. We find that ε‖,c ∝ (zc − z) close to the isostatic point, in agreement with prior

observations of the critical strain for packing-derived networks under shear strain [79].

This result may depend on the network structure and/or dilution protocol.
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Figure 6.11: The critical strain ε‖,c grows linearly with the distance to the isostatic point, zc−z,
for 2D packing-derived networks. These data correspond to 15 samples of 2D packing-derived
networks with W = 100 and κ̃ = 10−5. Error bars are ±1 standard deviation. The blue line
corresponds to a linear fit of the 10 points closest to zc.

Sample configurations

The online Supplemental Material for this article (see Ref. [28]) contains a zipped

folder config.zip containing sample network configurations for each network type.

A description of these files is available in the included text file config readme.txt.
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Compression stiffening of fibrous

networks with stiff inclusions

This chapter is adapted from Ref. [230]:

Jordan L. Shivers, Jingchen Feng, Anne S. G. van Oosten, Herbert Levine,
Paul A. Janmey, and Fred C. MacKintosh. Compression stiffening of fibrous
networks with stiff inclusions. Proceedings of the National Academy of
Sciences, 117 (35): 21037–21044, 2020.

7.1 Abstract

Tissues commonly consist of cells embedded within a fibrous biopolymer network.

Whereas cell-free reconstituted biopolymer networks typically soften under applied uni-

axial compression, various tissues, including liver, brain, and fat, have been observed to

instead stiffen when compressed. The mechanism for this compression stiffening effect

is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions

embedded in a fibrous network is compressed, heterogeneous rearrangement of the

inclusions can induce tension within the interstitial network, leading to a macroscopic

crossover from an initial bending-dominated softening regime to a stretching-dominated

stiffening regime, which occurs before and independently of jamming of the inclusions.

Using a coarse-grained particle-network model, we first establish a phase diagram for

compression-driven, stretching-dominated stress propagation and jamming in uniaxi-
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ally compressed 2- and 3-dimensional systems. Then, we demonstrate that a more

detailed computational model of stiff inclusions in a subisostatic semiflexible fiber

network exhibits quantitative agreement with the predictions of our coarse-grained

model as well as qualitative agreement with experiments.

7.2 Introduction

Semiflexible biopolymer and fiber networks are well known for their unusual ten-

dency to stiffen dramatically under applied shear or extensional strain [19, 25, 29, 36–

38, 226, 231–233] and soften under compression [38, 226]. Many biological tissues,

however, stiffen under applied compression [234–236], despite the fact that their

structural backbone, the extracellular matrix, consists of an otherwise compression

softening fiber network. Stiffening of tissues in response to uniaxial compression is

ubiquitous in animals large enough to be subjected to gravitational stresses or other

large forces. This behavior allows tissues to remain soft to small deformations needed

for mechanosensing, while protecting them from damage induced by large compressive

strains. In addition, there is increasing evidence that cells sense and respond to

compression-driven changes in tissue stiffness [234]. This can have important conse-

quences in, for example, brain tissue, which stiffens in response to increased blood

pressure [237] or the pressure gradient generated by a growing tumor [238, 239].

Whereas compression stiffening in tissues can be interpreted as a consequence

of incompressibility of either the inclusions (cells) [236] or the entire sample due to

poroelastic effects [226, 240], this behavior has also been demonstrated in biopolymer

networks containing stiff (i.e. non-deforming) colloidal particles [236], for which the

cause of compression stiffening is less clear. Developing a better understanding of the

origin of this behavior, and in particular its dependence on the properties of both the

inclusions and interstitial network, may improve our knowledge about the nonlinear

133



Chapter 7. Compression stiffening via inclusions

mechanics of tissues and support efforts to design functional biomimetic materials.

In recent work, van Oosten and coworkers measured the shear storage modulus,

as a function of applied uniaxial strain, of a reconstituted fibrin network containing

embedded stiff dextran particles [236]. In Fig. 7.1a, we reproduce their experimental

data for samples with an initial inclusion volume fraction of φ0 = 0.5. Under increasing

compression, this material exhibits an initial softening and subsequent stiffening regime.

Notably, this unusual compression stiffening effect occurs while the volume fraction of

the inclusions remains below the expected jamming threshold (see Appendix, Section

7.6). In contrast to these experiments with strain-stiffening biopolymer networks, the

authors observed no compression stiffening effect below jamming in a system con-

taining the same particles embedded within a linear elastic (i.e. non-strain-stiffening)

polyacrylamide gel. Thus, this unusual effect in the fibrin experiments appears to

originate from some cooperative interaction between the mutual steric repulsion of

the particles and strain stiffening properties of the network. In Fig. 7.1c, we sketch a

hypothetical mechanism for this behavior, along with a schematic plot of the shear

modulus as a function of applied uniaxial strain. In a biopolymer network containing

stiff inclusions, we expect that a small amount of applied macroscopic compression will

result in homogeneous compression throughout the interstitial network, causing initial

macroscopic softening akin to what is typically observed in compressed inclusion-free

biopolymer networks [38, 226]. Inevitably, sufficient macroscopic compression of the

sample induces contact and rearrangement of the sterically repulsive inclusions [241],

driving local shear and extensional strain between neighboring inclusions. Provided

that the critical extensional strain for stiffening of the interstitial network is sufficiently

low that the magnitude of induced particle rearrangement induces local stiffening,

this could lead to macroscopic stiff (tension-dominated) stress propagation before the

inclusions become jammed.

In this work, we describe a new mechanism for compression stiffening in fibrous
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networks containing inclusions, which we show is related to nonaffine, cooperative

particle rearrangement [241, 242] that occurs in random particle dispersions as macro-

scopic compression increases the particle volume fraction. This rearrangement induces

tension within the interstitial network, which in turn causes macroscopic stiffening.

To explore the counterintuitive notion of compression-driven tension, we first consider

the mechanics of a loosely distributed assembly of stiff, repulsive particles, in which

neighboring particles are connected by soft springs that are rope-like, meaning that

they provide zero mechanical response to compression but behave as harmonic springs

when stretched beyond a predefined slack extension. We refer to this as the rope model,

and treat it as a coarse-grained approximation of the zero-bending rigidity limit of a

fibrous network containing inclusions. Across a wide range of initial particle volume

fractions, we find that applying sufficient uniaxial compression to this system induces

a state of macroscopic stress propagation prior to jamming, in which stretching of

the soft springs constitutes the dominant stress contribution. This is distinct from

the jamming transition, which occurs at a well-defined particle volume fraction for

a given shape and size distribution [81, 82] and is dominated by compressive stress

propagation [130]. We find that stretching-dominated stress propagation appears

to be related to contact percolation of the particles, which prior work has shown

corresponds to the onset of increasing nonaffinity in the particle displacements in

a macroscopically compressed particulate assembly [241, 242]. We generate phase

diagrams for stretching-dominated stress propagation and jamming in 2D and 3D

systems, as a function of both the particle volume fraction and the level of applied

extension required for each ropelike spring to bear tension.

We then perform simulations of discrete disordered fiber networks, which have in

prior work been shown to reproduce the nonlinear mechanical behavior of reconstituted

biopolymer networks [38, 95, 226]. In the absence of inclusions, these remain soft

(mechanically bending-dominated) under applied compression and stiffen dramatically
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(becoming mechanically dominated by axial stretching of the network fibers) only

when stretched beyond a critical extensional strain. We modify these model networks

by embedding stiff, sterically repulsive particles that are rigidly connected to the

surrounding network bonds. Similar simulations have been performed in recent work

by Islam and coworkers [243], who showed that introducing rigid particles increases

the linear modulus and reduces the extensional critical strain of strain stiffening

networks. However, their work did not consider compression-driven phenomena. Here,

we simulate the rheology of such networks under applied uniaxial strain and show

that, with a sufficiently large volume fraction of embedded stiff inclusions, these

exhibit significant compression stiffening, qualitatively reproducing the rheology of the

experimental system. We show that this stiffening coincides with increasing nonaffine

(heterogeneous) rearrangement of the inclusion positions. Further, we demonstrate that

the volume-fraction dependence of this compression stiffening behavior is quantitatively

captured by the predictions of the rope model.
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Figure 7.1: (a) Confocal images of a gel of 10 mg/ml fibrin containing stiff spherical dextran
particles at a volume fraction of φ0 = 0.5. (b) Reproduced from Ref. [236]: Shear storage
modulus G for the above system as a function of applied uniaxial strain. Under compression, the
material initially softens before transitioning to a stiffening regime. (c) Top right: Compression
of a biopolymer network containing stiff inclusions initially leads to roughly uniform compression
of the interstitial network (compressed fibers are colored orange), which leads to bending of
the network fibers and softening of the macroscopic sample. Top middle: Further increasing
compression leads to rearrangement of the stiff inclusions, which drives stretching of fibers in
network regions between particles that move farther apart (stretched fibers are colored blue),
leading to a macroscopic crossover from bending-dominated to stretching-dominated mechanics.
Top left: With sufficiently large compression, the inclusions become jammed. Bottom: Schematic
plot of the shear modulus G as a function of applied uniaxial strain ε for a simulated system of
stiff particles embedded within a strain-stiffening network. The model is discussed in detail in
Section III and this data appears in Fig. 7.4.

7.3 Results and discussion

7.3.1 Physical mechanism of compression-driven tension

Biopolymer networks are unique in that they exhibit relatively weak, bending-

dominated compressive response but stiffer, stretching-dominated tensile response

above a critical applied strain. We hypothesize that the compression stiffening effect

observed in particle-network composites is the result of tension within the the inter-

stitial, strain-stiffening network caused by rearrangement of the sterically repulsive

particles as the macroscopic sample is uniaxially compressed. This particle rearrange-
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ment is driven by the inability of the non-deforming, spherical particles to accomodate

a homogeneous deformation field under uniaxial compression due to their mutual

steric repulsion. In this section, we consider a coarse-grained model consisting of a

random arrangement of stiff repulsive particles, in which neighboring particles are

connected by soft, rope-like springs that are harmonic under applied extension but

have no resistance to compression. In this zero-bending limit, we demonstrate that

compression-driven particle rearrangement can induce stretching-dominated, sample-

spanning stress propagation, at a volume-fraction-dependent critical compression prior

to jamming.

We consider random arrangements of N radially monodisperse spheres (bidisperse

disks in 2D, with a ratio of radii of 1.4 to avoid crystallization [82], in which the

two particle size subpopulations are equal in number), in a periodic box of volume

Ld, in which L is chosen so that the initial particle volume fraction (area fraction in

2D) is φ0. Further details on sample generation are provided in Methods. We use

N = 1000 in 3D and N = 900 in 2D. Neighboring particles, as identified by the

Delauney triangulation of the particle centers, are connected by rope-like springs. The

initial lengths of the rope-like springs are set to be equal to the initial distance between

each pair of neighboring particles, such that an increase in the distance between two

nearest neighbors corresponds to extension of the pair’s connecting spring. Because

we intend to treat each spring as a coarse-grained approximation of a strain-stiffening

network region between each pair of inclusions, we define a “slack extension” λc above

which each rope-like spring transmits tension. The energy for the rope-like springs is

written as follows

Hrope =
µ

2

∑
ij

(`ij − λc`ij,0)2

λc`ij,0
Θ (`ij − λc`ij,0) (7.1)

in which µ is the spring constant, Θ is the Heaviside step function, `ij is the distance

between the centers of particles i and j, and the sum is taken over all springs between

138



7.3. Results and discussion

-1 -0.5 0
0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0
1

1.1

1.2

1.3

1.4

1.5

(a) (b)

(c)

Figure 7.2: (a) We apply uniaxial compression to periodic systems comprised of N = 1000
randomly placed, repulsive spherical particles with initial volume fractions φ0 = 0.15 (left)
and φ0 = 0.3 (right), in which neighboring particles are connected according to the Delaunay
triangulation of the particle centers. The springs connecting pairs of particles are rope-like,
meaning that they only produce finite tension when stretched beyond a slack extension λc.
Applying a uniaxial compression of ε = −0.3 to a 3D system with initial volume fraction φ0 = 0.3
results in sufficient rearrangement of the sterically repulsive particles to induce sample-spanning,
tension-dominated stress propagation (blue springs are stretched), whereas the same compression
is insufficient to stress propagation for φ0 = 0.15. (b) Mechanical phase diagram for compressed
systems of N = 1000 repulsive spheres of modulus µp = 1, in which nearest neighbors (by
Delaunay triangulation) are connected by rope-like springs of modulus µ = 10−5, as a function
of uniaxial strain ε and initial volume fraction φ0. Here, the rope-like springs have critical
extension λc = 1. The blue circles correspond to the critical strain for the onset of tension
propagation, εc, and the red triangles correspond to the onset of jamming, εj . The dashed black
line corresponds to the predicted applied strain required for jamming of a system with initial
volume fraction φ0, εj = φ0/φj − 1, in which φj = 0.64. The white region corresponds to the
floppy regime (Htotal = 0, blue corresponds to the stretching-dominated regime (Htotal ∝ µ),
and gray corresponds to the jammed regime (Htotal ∝ µp). (b) Mechanical phase diagram for
volume fraction φ0 = 0.5 as a function of applied uniaxial strain ε and slack extension of rope-like
springs, λc. Error bars in both panels correspond to ±1 standard deviation.

neighboring particles. The repulsive energy between overlapping particles is written as

Hrepulsion =
µp
2

∑
mn

(
1− `mn

rmn

)2

Θ

(
1− `mn

rmn

)
(7.2)

139



Chapter 7. Compression stiffening via inclusions

in which µp is the one-sided repulsive spring constant and the sum is taken over all

pairs of particles m and n. As we are interested in the limit in which the particles

are much stiffer than the springs, we set µ = 10−5 and µp = 1. Again, this system

can be thought of as a coarse-grained description of a biopolymer network containing

embedded particles, which ignores the relatively weak, bending-dominated linear and

compressive mechanical responses of the network and instead considers both repulsion

between overlapping stiff particles and the stretching-dominated mechanics of network

regions driven above the critical strain.

To this system, we apply quasistatic uniaxial strain ε in small steps (|dε| < 0.01)

using generalized Lees-Edwards periodic boundary conditions [85]. At each step,

we minimize the total energy Htotal = Hrope +Hrepulsion using the L-BFGS method

[225]. In Fig. 7.2a, we plot sample configurations for a 3D system with N = 1000

particles at initial volume fractions of φ0 = 0.15 and φ0 = 0.30, under varying levels

of compression, in which the slack extension for the rope-like springs is set to λc = 1,

such that any stretching results in a nonzero energy contribution. Under an applied

compression of ε = −0.3, no stretching is induced in the system with φ0 = 0.15, so it

remains mechanically floppy, with Htotal = 0. When the same amount of compression

is applied to the sample with φ0 = 0.3, however, compression-driven rearrangement of

the sterically repulsive particles induces sample-spanning stress propagation in which

the mechanics are dominated by stretching, leading to Htotal ∝ µ. The stretching of a

significant fraction of the bonds is evident in the bottom right panel of Fig. 7.2a, in

which stretched bonds are colored blue. Importantly, the stretching-dominated stress

propagation shown in Fig. 7.2a occurs at a lower level of applied compression than

that required for jamming; thus in the absence of the springs, the system would be a

floppy, unjammed particle assembly. Sufficiently increasing the compression applied

to a given system eventually leads to jamming, i.e. stress propagation dominated by

repulsive forces between particles, such that Htotal ∝ µp, at εj = φ0/φj − 1. Here, φj
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is the jamming volume fraction of packings of spheres 3D (φj ≈ 0.64) and radially

bidisperse disks 2D (φj ≈ 0.84). Note that in our calculation of εj , we assume that the

particle volume fraction at the onset of jamming is the same for packings under uniaxial

compression as for packings under bulk compression, under which φj is commonly

measured. While this assumption may not be strictly true, we find that it works well

for our simulations.

To explore the full volume-fraction dependence of this effect, in Fig. 7.2b, we plot

a mechanical phase diagram for compressed 3D systems with slack extension λc = 1

and varying initial volume fraction φ0. We show the same phase diagram for 2D

systems in Appendix, Section 7.6, Fig. 7.5. We identify the critical compressive strain

corresponding to stretching-dominated stress propagation, εc, as the first applied strain

in which the system’s energy becomes finite (we choose a threshold ofHtotal/V = 10−11).

That this initial stress propagation is stretching-dominated is evident from the fraction

of the total energy deriving from stretching, Hrope/Htotal, which is approximately 1

at the onset of finite Htotal. We identify the critical compressive strain for jamming,

εj, as the strain at which the fractional contribution of repulsion to the total energy,

Hrepulsion/Htotal, exceeds 0.5. We find that the measured critical strains for jamming

obey the predicted dependence on the initial volume fraction, εj = φ0/φj − 1, in both

2D and 3D, and we observe that tension propagation occurs prior to jamming over a

wide range of initial volume fractions. Near φ0 = 0, we find that the critical strain for

tension propagation with λc = 1 seems to approximately match the expected applied

strain for contact percolation of particles with short-range attractive interactions,

εp = φ0/φp − 1, where φp ≈ 0.214 in 3D and φp ≈ 0.558 in 2D [241]. Note that this

calculation of εp has the same caveat as our prediction of εj, in that the referenced

values of φp were measured under bulk compression. Perhaps surprisingly, we observe

that stress propagation occurs slightly before the contact percolation point for an

intermediate range of volume fractions in 2D. We discuss this in Appendix, Section
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7.6 (see Fig. 7.6).

Intuitively, for a fixed volume fraction, increasing the slack extension λc of the

ropelike springs should increase the amount of compression-driven rearrangement

required for tension propagation. Consequently, εc should become more negative with

increasing λc. In contrast, the required compression for jamming, εj, strictly depends

on φ0 and is not expected to show any dependence on λc. In Fig. 7.2c, we plot εc and

εj for 3D systems with φ0 = 0.5 and varying λc, and we plot the complementary data

for 2D systems in Appendix, Section 7.6, Fig. 7.5. We plot εc(λc) for a several volume

fractions in both 2D and 3D in Appendix, Section 7.6, Fig. 7.7.

This compression-driven, tension-dominated stress propagation is a geometric effect,

caused by the inevitably heterogeneous rearrangement of a compressed assembly of

sterically repulsive particles as the particle volume fraction increases toward jamming.

Thus, the shape of the phase boundaries in Fig. 7.2b-c should not depend on the

precise elastic properties of the rope-like springs and particles provided that µp � µ.

If, in fibrous networks containing embedded stiff particles, the dominant modes of

stretching under macroscopic compression correspond to tension between nearest

neighbor particles, then the phase boundaries in Fig. 7.2b-c may be useful for

predicting the onset of compression stiffening in strain-stiffening networks containing

inclusions, such as the example depicted in Fig. 7.1a, provided that the inclusion

volume fraction and extensional critical strain of the underlying fiber network are

known. In the following section, we test these ideas using simulations of disordered

elastic networks containing stiff inclusions.

7.3.2 Model of a strain-stiffening network containing stiff inclu-

sions

This rope model has suggested a new mechanism for compression-driven, stretching-

dominated stress propagation in strain-stiffening materials containing sterically repul-
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sive particles. To establish the validity of this mechanism, we now perform simulations

using a more established fiber network model containing rigid particles, for which we

can measure the influence of applied uniaxial strain (compression or extension) on the

linear shear modulus.

Prior work has demonstrated that the mechanics of semiflexible polymer networks

are strongly influenced by the connectivity z, defined as the average number of

bonds connected to a network node [36, 48]. A network of initially unstressed and

athermal Hookean springs with 1D modulus µ has a finite shear modulus G ∝ µ

only if the average connectivity z is equal to or greater than an isostatic threshold

zc = 2d, identified by Maxwell, where d is the dimensionality [46]. The addition of

soft bending interactions with modulus κ results in a bending-dominated regime with

G ∝ κ for z < zc, with a crossover to a stretching-dominated regime with G ∝ µ for

z > zc [40, 48, 114, 116]. For extracellular matrices of collagen or fibrin, the average

connectivity z . 4 is well below the 3D isostatic threshold of 6 [23, 98]. Thus, if such

subisostatic networks are athermal, it is the former bend-dominated regime that is

expected to describe the linear elastic modulus. In this linear, bending-dominated

mechanical regime, the introduction of tensile prestress (e.g., by molecular motors

[73, 182] or applied extension [38, 226, 244]) drives an increase in the shear modulus.

In fact, sufficiently large applied shear or extensional strain [50, 134] can induce

a crossover to a stiff, stretching-dominated regime [19, 38, 50, 114, 226], with the

magnitude of required strain decreasing to zero as z → zc [79]. In contrast, under

applied compression, networks typically soften relative to the unstrained state [244],

remaining (in the case of biopolymer networks) within the bending-dominated regime

[38, 226, 236]. In this section, we demonstrate that embedding repulsive particles

within such networks leads to compression stiffening, at a level of compression that

is controlled by a combination of the network critical strain and the particle volume

fraction. We find that the phase diagram for the rope model discussed in the previous
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section quantitatively captures the volume-fraction dependence of the compression

stiffening effect in this more realistic model.

We generate periodic, subisostatic fiber networks of average connectivity z derived

from dense 3D sphere packings, as described in Methods and Appendix, Section 7.6.

Then, we randomly place non-intersecting spherical inclusions of radius r within the

simulation box until the desired inclusion volume fraction φ0 is reached. Any network

bond that intersects with the boundary of an inclusion is connected to the inclusion

surface, at the intersection point, by a freely rotating joint, and all remaining bond

segments with the inclusion boundary are removed. Each inclusion transforms as a

rigid object with (in 3D) 3 translational and 3 rotational degrees of freedom. Example

images of a network containing inclusions, prior to applied deformation, are provided

in Appendix, Section 7.6, Fig. 7.9.

For a given configuration, the total energy H of the system is computed as

H = HS +HB +HR, (7.3)

in which HS, HB, and HR represent stretching, bending, and repulsive contributions,

respectively. We treat individual segments as harmonic springs of modulus µ, compute

harmonic bending interactions of modulus κ between nearest-neighbor segments, and

account for one-sided harmonic repulsive interactions of modulus µR between pairs

of inclusions and between inclusions and network nodes. Unless stated otherwise, we

set µ = 1 and κ = 10−4 so that the linear elasticity of the interstitial, subisostatic

network is bending-dominated. Prior work has shown that networks with κ around this

magnitude reasonably capture the mechanical behavior of reconstituted collagen and

fibrin networks [38, 95, 98, 226]. We set µR = 100 so that the repulsive interactions are

significantly stiffer than both the bending and stretching interactions. Further details

are provided in Methods. Since we focus on the regime below jamming (|ε| < |εj|)
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throughout this work, our results should be qualitatively consistent with µR → ∞

provided that µR � {µ, κ}. Using the procedure described in Methods, we measure

the linear shear modulus G as a function of uniaxial strain ε for compressive and

extensional strains over a range of inclusion volume fractions.

First, we consider networks with z = 4 which, without inclusions, soften under

compression but stiffen at a critical extensional strain of εc,ext ≈ 0.3, identified as the

inflection point of the G vs. ε curve for φ0 = 0 in Fig. 7.4a. When inclusions are

present with a sufficient φ0, these stiffen under both applied extension and compression.

In Fig. 7.4a, we plot the shear modulus for the same networks with varying initial

inclusion volume fraction φ0 . We find that networks containing sufficiently large

φ0 undergo a compression softening regime at low levels of compression followed by

stiffening at higher levels of compression, similar to the behavior observed in the

experiments of Ref. [236] shown in Fig. 7.1a. In Fig. 7.3, we provide images of

a simulation with φ0 = 0.3 and z = 4 under varying levels of applied compression.

Whereas most bonds are compressed (orange) at the relatively low applied macroscopic

compression of ε = −0.01, at the more substantial compression of ε = −0.35 we observe

significant stretching (blue) of network regions between neighboring inclusions. As in

the rope model, this stretching is driven by rearrangement of the sterically repulsive

inclusions as the system approaches jamming. We find that increasing φ0 leads to a

decrease in the magnitude of applied compression corresponding to the minimum in G,

beyond which the networks stiffen with increasing compression. For sufficiently large

φ0 and sufficient applied compression, these enter a stretching-dominated stiffening

regime with G ∝ µ at a critical compressive strain that decreases with increasing

φ0, in qualitative agreement with the phase diagram in Fig. 7.2d. In Fig. 7.4b,

we plot the stretching energy fraction HS/H as a function of strain for the same

networks, demonstrating that compression stiffening coincides with a crossover from a

bending-dominated regime to a stretching-dominated regime. To emphasize this point,
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we repeat these measurements for networks with varying the bending modulus κ and

fixed φ0 = 0.4 and z = 4 (see Appendix, Section 7.6, Fig. 7.10). These show a clear

shift from a softening regime in which G ∝ κ at small strains, to a crossover stiffening

regime at intermediate strains, to a stretch-dominated stiffening regime with G ∝ µ

at larger strains. In Fig. 7.4d, we draw a schematic phase diagram for the shear

modulus of a strain-stiffening fibrous network containing rigid inclusions as a function

of inclusion volume fraction and applied uniaxial strain. In Appendix, Section 7.6, Fig.

7.12, we replot the data from Fig. 7.4, with strain points colored by the magnitude of

G, over a plot of φ0 vs. ε, revealing the regimes sketched in Fig. 7.4d.

To explore the influence of strain heterogeneity on the compression stiffening effect,

we measure the nonaffinity Γ(ε) of the inclusion deformation field as follows

Γ =
1

r2ε2

〈
|~ui(ε)− ~ui,aff(ε)|2

〉
i

(7.4)

in which the average is taken over all inclusions, r is the inclusion radius, ~ui(ε) is the

actual position of inclusion i after relaxation under applied strain ε, and ~ui,aff(ε) is the

position of inclusion i under affine (homogenous) deformation of the initial network

configuration by strain ε. Note that since our simulations are periodic, we shift ~ui

and ~ui,aff for the purposes of calculating Γ so that the average of each corresponds to

the origin. Under an applied compression of ε, particles are displaced by an average

distance dΓ = r|ε|
√

Γ from their expected locations under affine deformation. As Γ is

proportional to the typical squared distance of each inclusion from its expected position

under macroscopic homogenous compression, increasing rearrangement of the inclusions

will be indicated by increasing Γ. In the inset of Fig. 7.4b, we plot Γ for systems

with varying φ0. We find that Γ decreases in all systems in the compression softening

regime, but it increases throughout the compression stiffening regime, beginning at

roughly the same strains in which the shear modulus G begins to increase. As Γ can
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Figure 7.3: Images of a periodic packing-derived network unit cell with L = 15, z = 4,
κ = 10−4, and spherical inclusions with radius r = 2 and volume fraction φ0 = 0.3 under varying
levels of compression. Compressed bonds are colored orange and stretched bonds are blue. Bond
thickness is proportional to the magnitude of the tensile/compressive force |f | on the bond
normalized by the average force magnitude 〈|f |〉, with thresholds at |f |/〈|f |〉 = [1, 8]. The
dimensions of the outer box represents the periodic Lees-Edwards boundary conditions.

in principle be measured in experiments via particle-tracking, this quantity could be

used to test whether increasing strain heterogeneity drives compression stiffening in
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(c)

(d)

Figure 7.4: (a) Shear modulus G as a function of applied uniaxial strain ε for 3D packing-derived
networks with z = 4, κ = 10−4, and varying initial inclusion volume fraction φ0. Networks with
large enough φ0 undergo a compression-driven crossover from a bending-dominated softening
regime to a stiffening regime and eventually become stretching-dominated, as reflected by the (b)
stretching energy fraction HS/H. With increasing φ0, the crossover point occurs at lower levels
of applied compression. Inset: Nonaffinity Γ of the inclusion deformation as a function of applied
compression. (c) Data from (a) normalized by the zero-strain shear modulus G0 = G(ε = 0)
and plotted as a function of the uniaxial strain ε normalized by the predicted critical strain for
compression-driven tension propagation, εc(φ0, z), where εc,ext = 0.3 is the critical extensional
strain for empty networks with z = 4, and εc(φ0, λc = 1 + εc,ext) is determined from the 3D
rope model, as described in Appendix, Section 7.6. (d) Schematic phase diagram for the shear
modulus G as a function of applied uniaxial strain ε and initial inclusion volume fraction φ0.

experiments. We note that, given the cooperative nature of inclusion rearrangement, Γ

is expected to increase in magnitude with increasing system size (number of inclusions),

which is relatively limited for our 3D simulations. In Appendix, Section 7.6, Fig. 7.14,

we show that in larger 2D simulations, Γ grows more dramatically than in the smaller

3D systems.

In the previous section, for a random configuration of particles with initial volume

fraction φ0, with neighboring particles connected by rope-like springs with slack

extension λc, we determined the critical compressive strain εc for stretching-dominated
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stress propagation. Since the rope-like springs act as a coarse-grained approximation of

a strain-stiffening network with a known critical extensional strain εc,ext(φ0 = 0, z), we

should compare our simulations to the rope model with slack extension λc = 1 + εc,ext.

Using εc(φ0, λc) determined for the rope model, as shown in Appendix, Section 7.6,

Fig. 7.7, we can thus predict the critical compressive strain εc(φ0, z) ≡ εc(φ0, λc =

1 + εc,ext(φ0 = 0, z)) for stretching-dominated stress propagation in our simulations. In

Fig. 7.4c, we show that normalizing G(ε) in Fig. 7.4 by the zero-strain shear modulus

G0 = G(ε = 0) and normalizing the applied uniaxial strain by the predicted critical

compressive strain εc(φ0, z) leads to reasonable collapse of the data from Fig. 7.4a

under compression. In Fig. 7.4c (inset), we show that the stretching energy fraction

HS/H curves also collapse when plotted as a function of ε/εc(φ0, z).

Based on our observation that increasing the slack extension of the springs in

the rope model leads to an increase in the magnitude of the critical compression

required for stretching-dominated stress propagation, we anticipate that increasing z

should decrease the magnitude of compression required for stiffening in our simulated

network-inclusion composites. In inclusion-free, subisostatic networks, increasing z

results in a decrease in the critical applied extensional strain required for stiffening. In

simulations, we find that for systems with a fixed φ0, decreasing the extensional critical

strain of the underlying network by increasing z in networks results in a decrease in

the magnitude of applied compression at which the system stiffens (see Appendix,

Section 7.6, Fig. 7.11a) and becomes stretching-dominated (see Appendix, Section

7.6, Fig. 7.11b), in agreement with our expectations based on the rope model.

For the case of applied extension, we find that our results agree qualitatively with

those of Islam and coworkers, who used a similar model of random 3D networks

containing inclusions [243]. Under increasing extension, we observe an initial bending-

dominated stiffening regime, with G ∝ κ, followed by a crossover to a much stiffer

stretching-dominated regime, with G ∝ µ, in agreement with their results for bonded
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inclusions [243]. This transition occurs at a critical extensional strain that decreases

with increasing φ0, in further agreement with their work. Likewise, we find that the

volume-fraction-dependence of the critical extensional strain is sensitive to the nature

of the connections between the inclusions and network. If the inclusions that are

disconnected from the surrounding network, we find that increasing φ0 leads to an

increase in the critical extensional strain (see Appendix, Section 7.6, Fig. 7.16), as

observed in Ref. [243]. However, we find that these, too, stiffen under compression at

a volume-fraction-dependent critical strain, in qualitative agreement with our other

results.

In Appendix, Section 7.6, Fig. 7.14, we plot analogous data for Fig. 7.4a for

2D packing-derived networks with z = 3 and varying φ0. These exhibit compression

stiffening behavior that qualitatively agrees with our 3D simulations.

7.4 Concluding remarks

We have demonstrated that the compression-driven nonaffine rearrangement of stiff

particles embedded in a network can generate tension-dominated stress propagation,

coinciding with macroscopic compression stiffening, and we have shown how this

effect is controlled by both the volume fraction of particles and the strain-stiffening

properties of the interstitial network. Using simulations of disordered 3D elastic

networks containing stiff inclusions, which qualitatively reproduce the compression

stiffening behavior observed in experiments, we have provided evidence that, given

both the volume fraction of inclusions and the critical extensional strain of the

interstitial strain stiffening network, one can utilize the rope model to predict the

critical compressive strain corresponding to stretching-dominated stress propagation.

Our results suggest a strategy for rational design of nonlinear mechanics in engineered

tissues or synthetic composite materials using controlled volume fractions of inclusions.
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Interestingly, a similar rearrangement-driven stiffening effect might occur below

the jamming transition for networks containing deformable inclusions, such as cells,

provided that these sufficiently resist changes in volume. If so, then the rearrangement-

driven stretching effect described in this work may drive the compression stiffening

behavior that has been widely observed in living tissues. To study a more direct

model of tissues, one could replace the stiff inclusions in our model with deformable

particles that resist area/volume change [245, 246] and/or actively exert forces on the

network [108, 247]. Contractile cells, for example, might suppress or entirely remove

the initial compression softening effect by pre-stretching regions of the interstitial

network. Further, large scale force generation induced by contractile cells [109, 196]

may enhance the rearrangement-driven stiffening described in our work. Indeed,

the authors in Ref. [236] showed that fibrin networks containing particles and cells

stiffen more than networks containing particles alone. Prestress may also explain why

an initial compression softening regime is not typically observed in tissue samples

[234–236].

While our simulations assume that bonds are permanent, real biopolymers rupture

under sufficiently large extension. In Appendix, Section 7.6, Fig. 7.15, we plot the

maximum bond extension max(`ij/`ij,0) in a 3D sample with φ0 = 0.5 and z = 4.

Even as the sample approaches jamming, the maximum stretch does not exceed 50%.

Since this work is motivated by experiments on fibrin, which can be stretched far

beyond this value, we do not include effects of rupture. Nevertheless, this effect may

be relevant for less extensible biopolymers, such as collagen. In addition, as we focus

on the quasistatic limit in this work, we ignore any mechanical influence of the fluid

(i.e. poroelastic effects, surface tension, etc.). These may become important in samples

with large particle volume fractions. Future work will need to include such effects,

particularly if the dynamic properties of the material are to be considered.

Whereas we have considered only the case of zero lateral strain in this study, we
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note that different boundary conditions could certainly affect our results. For example,

a uniaxially compressed sample with free lateral boundaries would not necessarily

jam at εj, but rather the inclusions would instead rearrange by spreading outward to

accomodate increasing compression. Nevertheless, this effect would lead to increasing

shear/extension in the regions between inclusions, so we expect that this would simply

increase the duration of the stretching-dominated stiffening regime and delay the onset

of jamming. This is possibly relevant to experimental results in Ref. [236] on fibrin

networks with dextran inclusions at φ0 = 0.6. Although εj ≈ −0.06 for φ0 = 0.6, these

were shown to continue to compression stiffen at even larger compressive strains of up

to ε = −0.2.

The rope model, given its simple nature, lends itself easily to further exploration.

One could, for example, replace the rope-like springs between neighbors with springs

that follow a more complex force-extension curve, e.g. that of extensible thermal

worm-like chains [19].

7.5 Methods

7.5.1 Generation of coarse-grained rope model

As described in the main text, we consider N radially monodisperse spheres in a

periodic box of volume Ld, in which L is chosen such that the initial particle volume

fraction (area fraction in 2D) is φ0. We use N = 1000 in 3D and N = 900 in 2D. To

generate the initial particle configuration, we first randomly choose N initial locations

as particle centers and increase the particle radii from 0 in small steps, allowing the

system’s energy to relax at each step using the L-BFGS method [225] to avoid particle

overlap. Upon reaching the desired radii, we generate the Delaunay triangulation of the

particle centers [229] to identify pairs of neighboring particles, which we subsequently

connect with rope-like springs. The initial lengths of the rope-like springs are set to
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be equal to the initial distance between each pair of neighboring particles.

7.5.2 Generation of subisostatic networks containing stiff inclu-

sions

We begin with a packing-derived network composed of N nodes with average

connectivity z0 ≈ 8 in a 3D periodic unit cell of volume V = L3. We then randomly

delete bonds until the desired average network connectivity z is realized. We randomly

place inclusions of radius r = 2 with total volume fraction φ0 within the periodic

box, connecting these to the network at points of intersection by freely rotating joints.

Further details are provided in Appendix, Section 7.6. Unless otherwise stated, we

use L = 15 and N = 153.

The total energy H of the network is computed as

H = HS +HB +HR (7.5)

in which HS, HB, and HR represent the stretching, bending, and repulsive contribu-

tions, respectively. We treat each network segment as a Hookean spring with spring

constant µ, such that

HS =
µ

2

∑
ij

(`ij − `ij,0)2

`ij,0
(7.6)

in which `ij and `ij,0 are the length and rest length, respectively, of the segment

connecting nodes i and j. We add harmonic bond-bending interactions with energy

scale κ between connected segments as

HB =
κ

2

∑
ijk

(θijk − θijk,0)2

`ijk,0
(7.7)

in which θijk and θijk,0 are the angle and rest angle between neighboring segments

ij and jk, `ijk,0 = (`ij,0 + `jk,0)/2, and the sum is taken over all connected network
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node triplets. Rest angles and rest lengths are defined such that the initial network

structure corresponds to the zero energy configuration. We also include purely repulsive

harmonic interactions with energy scale µR as HR = HR,a +HR,b, where HR,a resists

overlap between pairs of inclusions and HR,b resists overlap between inclusions and

network nodes. The first is defined as

HR,a =
µR
2

∑
mn

(
1− umn

rmn

)2

Θ

(
1− umn

rmn

)
(7.8)

in which umn = |um − un| is the distance between the central nodes of inclusions m

and n, rmn = rm + rn is the sum of their radii, and Θ is the Heaviside step function.

The repulsive contribution between inclusions and network nodes is

HR,b =
µR
2

∑
m

∑
i

(
1− umi

rm

)2

Θ

(
1− umi

rm

)
(7.9)

in which umi = |um − ui| is the distance between the center node of inclusion m and

network node i and the sums are taken over all inclusions m and network nodes i.

7.5.3 Rheology simulation

We consider quasistatic uniaxial strain ε followed by simple shear strain γ, applied

relative to the initial reference configuration using generalized Lees-Edwards boundary

conditions [85]. In 3D, the deformation gradient tensor is

Λ(γ, ε) =


1 0 γ

0 1 0

0 0 1




1 0 0

0 1 0

0 0 1 + ε

 . (7.10)

At each applied strain step, we numerically minimize H using the L-BFGS algorithm

[225]. About a given relaxed configuration at uniaxial strain ε, we compute the shear
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stress σxz(ε) as

σxz =
1

V

∂H
∂γ

(7.11)

in which V is the volume of the deformed simulation box. We apply small uniaxial

strain steps of magnitude |dε| = 0.01. At a given uniaxial strain, we apply small

symmetric positive and negative shear strain steps dγ = 0.01 to compute the apparent

shear modulus

G(ε) =
∂σxz(ε)

∂γ
(7.12)

All data reported in this paper correspond to an average over 15 independently

generated network samples.

7.6 Appendix

7.6.1 Predicting the required compression for contact percolation

and jamming

Consider a parallel-plate rheometer containing a gel sample occupying initial

total volume V = V0. The gel consists of a polymer network containing randomly

distributed, rigid spherical inclusions with initial volume fraction φ0. The polymer

volume fraction is negligible, and an incompressible buffer fluid fills the remaining

sample volume. Assuming that the inclusions are rigid and that the network and

inclusions are mechanically constrained to remain within the initial sample volume,

changes in V amount to fluid flow into or out of the sample. Under uniaxial strain ε

with zero lateral strain, the total volume of the sample becomes V = (1 + ε)V0. Note

that compression corresponds to ε < 0. As the volume occupied by the inclusions (φ0V0)

remains constant, the strain-dependent inclusion volume fraction is φ = φ0/(1 + ε).

Prior work has shown that contact percolation in radially bidisperse spheres with

short-range attractive interactions occurs at a particle volume fraction of φp ≈ 0.214
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in 3D and φp ≈ 0.558 in 2D [242], under effective bulk compression. Assuming that

the volume fraction for contact percolation is protocol independent (which may not be

true), then for a system with initial volume fraction φ0, we can estimate the uniaxial

strain required for contact percolation as εp = φ0/φp − 1. Jamming likewise occurs at

a specific particle volume fraction φj (for bidisperse disks in 2D, φj ≈ 0.84, and for

spheres in 3D, φj ≈ 0.64 [248]). If we again assume that the jamming volume fraction

is the same for bulk compression as for uniaxial compression, then for a given φ0, we

can estimate the uniaxial strain required for jamming is εj = φ0/φj − 1. As we show

in the main text and in Fig. 7.5, this estimate agrees with our simulations.

7.6.2 Rope model

In Fig. 7.5, we show the complementary figure to Fig. 2 in the main text for the

2D rope model, using radially bidisperse disks. We note that, for an intermediate

range of initial particle area fractions, stretching-dominated stress propagation in the

λ = 1 limit occurs at lower levels of applied compression than predicted for contact

percolation (εp = φ0/φp − 1), whereas this is not observed in our 3D results. In Fig.

7.6, we sketch examples of systems in which stretching-dominated stress propagation

for λ = 1 occurs concurrently with contact percolation (Fig. 7.6a) and before contact

percolation (Fig. 7.6b). In Fig. 7.7a, we plot the critical compressive strain εc for

stretching-dominated stress propagation in the 2D rope model as a function of the

slack extension of the rope-like springs, λc − 1, for varying φ0. In Fig. 7.7b, we plot

the same data for the 3D rope model, as described in the main text. To predict the

critical compressive strain for stretching-dominated stress propagation in a system

with inclusion volume fraction φ0 and network connectivity z, we interpolate between

the measured points to find εc(φ0, λc = 1 + εc(φ = 0, z)), where εc(φ = 0, z) is the

critical extensional strain for an inclusion-free network of connectivity z.
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Figure 7.5: (a) Mechanical phase diagram for compressed systems of N = 900 radially
bidisperse, repulsive disks, in which nearest neighbors (by Delaunay triangulation) are connected
by rope-like springs, as a function of uniaxial strain ε and initial volume fraction φ0. Here,
µ = 10−5, µp = 1, and the rope-like springs have slack extension λc = 1. The blue circles
correspond to the critical strain for the onset of stretching-dominated stress propagation, εc, and
the red triangles correspond to the onset of jamming, εj . The dashed black line corresponds
to the predicted applied strain required for jamming of a system with initial volume fraction
φ0, εj = φ0/φj − 1, in which φj = 0.84. The white region corresponds to the floppy regime
(H = 0, blue corresponds to the stretching-dominated regime (H ∝ µ), and gray corresponds to
the jammed regime (H ∝ µp). (b) Mechanical phase diagram for volume fraction φ0 = 0.5 as a
function of applied uniaxial strain ε and slack extension of rope-like springs, λc. Error bars in
both panels correspond to ±1 standard deviation.

157



Chapter 7. Compression stiffening via inclusions

particles in contact (repulsion)
stretched spring
unstretched spring

(a)

(b)

Initial Compressed

Figure 7.6: Illustrations of periodic assemblies of particles connected by rope-like springs in
which, under applied uniaxial compression, stretching-dominated stress propagation occurs (a)
concurrent with contact percolation and (b) prior to contact percolation.
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Figure 7.7: Measured critical strain values for compression-driven, stretching-dominated stress
propagation in (a) the 2D rope model for systems with N = 900 radially bidisperse disks and
(b) the 3D rope model for systems with N = 1000 radially monodisperse spheres, with varying
initial volume fraction φ0, as a function of the slack extension of the rope-like springs, λc. Circles
represent measured values and solid lines represent cubic spline fits used to interpolate between
measured points. We use this plot to empirically predict the critical strain for compression-driven
stiffening in simulated particle-network composites in which the interstitial network has a known
critical extensile strain.
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7.6.3 Fiber network simulations

Underlying random networks

Below we describe the procedures for generating random packing-derived networks

in 2D and 3D, to which we eventually insert inclusions.

2D To generate 2D packing-derived networks, we randomly place N = L2 radially

bidisperse disks with r ∈ (r0, 1.4r0) in a periodic square unit cell of side length L and

incrementally increase r0 from 0, allowing the system to relax at each step, until the

average connectivity of the contact network (joining overlapping disks) exceeds 5.5.

We use a ratio of radii of 1.4 to prevent the particles from developing crystalline order

[82]. We then selectively remove bonds from the most highly connected pairs of nodes,

in order to minimize spatial heterogeneity in the connectivity [79], until the desired

average connectivity z is reached. During the dilution procedure, dangling ends are

also removed.

3D To generate 3D packing-derived networks, we randomly place N = L3 spheres

of radius r0 in a periodic cubic unit cell of side length L and incrementally increase

r0 from 0, allowing the system to relax at each step, until the average connectivity

of the contact network (joining overlapping disks) exceeds 8. We then selectively

remove bonds from the most highly connected pairs of nodes, in order to minimize

spatial heterogeneity in the connectivity [79], until the desired average connectivity z

is reached. During the dilution procedure, dangling ends are also removed. In Fig.

7.8, we show a 3D network with L = 15 and z = 4 prior to the addition of inclusions.
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Figure 7.8: Periodic network made up of 153 nodes with average connectivity z = 4.

Networks with bound inclusions

After the underlying fiber network is generated, non-intersecting inclusions (disks

in 2D and spheres in 3D) are randomly placed until the desired inclusion volume

fraction is reached. Bonds that intersect with the surface of a placed inclusion are

connected to the inclusion surface, at the intersection point, by a freely rotating joint,

and all bond segments within the inclusion boundary are removed. Each inclusion

behaves as a rigid d-dimensional body with d translational and x rotational degrees

of freedom (x = 1 for d = 2, and x = 3 for d = 3), such that all of the boundary

connections translate and rotate rigidly with the inclusion. In Fig. 7.9, we show

images of the resulting networks, containing inclusions, in 2 and 3 dimensions. In 2D,

we use radially bidisperse circular inclusions, with a ratio of radii of 1.4, in which half

of the inclusions have the larger radius R = 4.
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(a) (b)

(c) (d)

Figure 7.9: (a) Single inclusion of radius R = 4 in a 2D packing-derived network with z = 3.
Bonds that intersect with the inclusion boundary are rigidly connected to the boundary, at
the point of intersection, by a freely rotating joint. One-sided repulsive interactions act both
between inclusions whose boundaries overlap and between inclusion boundaries and network
nodes. (b) Example of an initial configuration of a packing-derived network with z = 3 and
radially bidisperse inclusions, with area fraction φ0 = 0.4. (b) Single inclusion of radius R = 2
in a 3D packing-derived network with z = 4. (b) Example of an initial configuration of a 3D
packing-derived network with z = 4 and inclusion volume fraction φ0 = 0.4.
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Figure 7.10: Shear modulus G for 3D packing-derived networks with φ = 0.4, z = 4, varying
bond-bending modulus κ and constant stretching modulus µ = 1. These systems undergo a
transition from a regime in which G ∝ κ at low levels of applied compression to one in which
G ∝ µ (independent of κ) at higher compression levels.
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Figure 7.11: (a) Shear modulus G and (b) stretching energy fraction HS/H as a function of
applied uniaxial strain ε for 3D packing-derived networks with φ0 = 0.4, κ = 10−3, and varying
average connectivity z. Under both compression and extension, increasing z leads to a decrease
in the magnitude of strain required the onset of the stiff stretching-dominated regime.
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Figure 7.12: Data from Fig. 3a in the main text:. Phase diagram depicting the shear modulus
for 3D packing-derived networks with z = 4 and κ = 10−4 as a function of inclusion volume
fraction φ0. Each x denotes the predicted critical compressive strain for stretching-dominated
stress propagation for the rope model with volume fraction φ0, using an appropriate value of
the slack extension λc to account for the extensional critical strain εc,ext of 3D packing-derived
networks with z = 4 , i.e. λc = 1 + εc,ext(z = 4) ≈ 1.3.

Figure 7.13: (a) Shear modulus G as a function of applied uniaxial compression ε for 2D
packing-derived networks with z = 3, κ = 10−4, and varying initial inclusion area fraction φ0.
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Figure 7.14: Comparison of the strain-dependent inclusion nonaffinity between 2D and 3D
packing-derived networks containing inclusions with κ = 10−4 and volume fraction (area fraction
in 2D) φ0. The 3D data correspond to z = 4, L = 15, and r = 2, and the 2D data correspond to
z = 3, L = 60, and average inclusion radius 〈r〉 = 3.43 (we use radially bidisperse inclusions in
2D; half the inclusions are of radius 4 and half 4/1.4). Given that the ratio of the system size to
the inclusion radius is larger in our 2D simulations than in our 3D simulations, it is unsurprising
that the 2D systems exhibit more heterogeneous inclusion deformation. Future work will be
necessary to explore the system size dependence of Γ in 2D and 3D.
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Figure 7.15: Average, minimum, and maximum bond change in bond length for a 3D packing-
derived network with φ0 = 0.5, z = 4, and κ = 10−4. Under compression, we find that the
maximum extension of any individual bond does not exceed roughly 50%, even as the system
approaches the jamming point. For systems with highly extensible bonds, such as fibrin (which
can tolerate extensional strains of over 200% [24]), we can thus expect compression-driven
stiffening to occur without stretching-induced bond rupture.
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Disconnected inclusions

To test whether bonds between the inclusions and surrounding network are necessary

for compression-stiffening, we also consider 2D systems in which the locations of the

(radially bidisperse) inclusions are chosen as discussed above, but all bonds are cut

within radius rfinal/2 of each inclusion center and then the repulsive inclusion is

swollen from radius 0 to rfinal (in which rfinal = R or R/1.4). In this case, each

inclusion interacts with the surrounding network only through repulsive interactions.

Parameters are otherwise chosen to be the same as for the 2D data presented in Fig.

7.13. As shown in Fig. 7.16a, the initial inclusion swelling induces prestress within

the interstitial network. The corresponding shear moduli, as a function of axial strain,

for such systems with varying φ0.

(a) (b)

Figure 7.16: (a) 2D packing-derived network with z = 3 and radially bidisperse inclusions with
r ∈ [3, 3/1.4] and φ0 = 0.4 that are not connected to the surrounding network. Blue segments
are stretched and orange segments are compressed. (b) Shear modulus G as a function of applied
uniaxial compression ε for packing-derived networks with z = 3, κ = 10−4, and varying initial
inclusion area fraction φ0
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Conclusion

In this thesis, we made progress in understanding the nonlinear viscoelastic prop-

erties of disordered networks. More specifically, we explored how applied deformation

drives disordered assemblies of biopolymers, and network-derived materials in general,

to collectively transition between dramatically different viscoelastic regimes. These

transitions are ubiquitous in biological materials and include strain-driven stiffening

of cytoskeletal and extracellular networks, the tension-driven nonlinear Poisson ef-

fect in the extracellular matrix and its effects on alignment and densification, and

compression-driven, tension-controlled stiffening in network-inclusion composites. Im-

proving our understanding of the factors that control these phenomena, e.g. the elastic

properties of filaments or the microstructure of a network, will bolster future efforts

to construct synthetic tissues and biomimetic materials with tunable macroscopic

mechanical properties.

Chapters 3-5 focused on strain-controlled critical behavior in disordered elastic

networks. Recent work has shown that strain stiffening in fiber networks can be modeled

quantitatively as a phase transition between distinct soft and rigid mechanical regimes,

with applied strain acting as the control variable. Networks traversing the critical

point exhibit familiar signatures of continuous phase transitions, including diverging
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characteristic length and time scales and power law scaling of various observables

with distance to the transition. Our work has focused on understanding the nature

of the strain stiffening transition in a minimal model of disordered elastic networks.

In Chapter 3, we constructed coarse-grained computational models of disordered

elastic networks and demonstrated that, near the onset of rigidity, these display

anomalously broad and seemingly scale-invariant force distributions. In Chapter 4,

we used real space renormalization to determine relationships between the critical

exponents describing the strain-controlled stiffening transition, which we then tested

in simulations. We have since expanded upon this work in three-dimensional systems

and characterized associated finite size effects [62, 63]. In Chapter 5, we explored

the dynamic rheological properties of fluid-immersed networks near the stiffening

transition. We found that the application of strain in these systems can drive the

growth and even divergence of the time scales controlling stress relaxation, with the

remarkable consequence of externally tunable power law rheology.

In Chapter 6, we explored the manifestation in disordered networks of an elastic

phenomenon known as the Poisson effect, which describes the tendency of a material

that is stretched along one direction to consequently shrink in width. In contrast to

common materials such as rubber that shrink only slightly, biopolymer networks tend

to exhibit an anomalously large and nonlinear Poisson effect accompanied by an overall

reduction in volume, even under relatively small applied strains. In the extracellular

matrix, this behavior leads to substantial alignment and increased fiber density in

strained regions, which may in turn influence cell-cell communication and durotaxis.

Using coarse-grained simulations, we demonstrated that the nonlinear Poisson effect in

disordered elastic networks is controlled by a mechanical phase transition, analogous to

the shear-driven transition discussed elsewhere in this thesis, that occurs along a line of

connectivity-controlled critical points in strain. Near the transition, networks exhibit

power-law scaling of the Young’s modulus and diverging nonaffine strain fluctuations.
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This work could potentially prove useful in learning to design responsive biomimetic

materials with tunable stiffness and polarization.

In Chapter 7, we explored how filling biopolymer networks with additional me-

chanical components, like living cells, can add further complexity to their viscoelastic

behavior [249]. Although cell-free networks are easily compressed, experiments have

shown that cell-rich living tissues, like liver, brain, and adipose tissue, stiffen signifi-

cantly under applied compression. Despite an abundance of experimental evidence

for this behavior, its physical origin has remained poorly understood. We uncovered

a novel physical mechanism for this effect and, using a simple computational model

of interconnected repulsive particles, we established a phase diagram for the onset of

compression-driven stretching and jamming in particle-network composites, which we

used to predict the onset of stiffening in coarse-grained simulations of these composites.

This work aims to improve our understanding of disease-driven changes in the response

of tissues to compression, in addition to enabling the design of compression-responsive

synthetic tissues and biomimetic materials.
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