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Distribution of the critical strain γc

The critical strain γc for every individual sample is identified in the absence of fiber bending rigidity κ = 0 as the
strain where the shear stress becomes finite. Using the bisection method, we are able to approach γc from above
with high precision [1, 2]. The distribution of these values are shown in Fig. S1 for the models we used in this paper.
The critical strain depends on the network’s connectivity z as well as its architecture. As expected, for networks
with larger z the critical strain is smaller. We also note that as the system size increases the network becomes more
isotropic, thus the width of γc distribution becomes smaller [3].

FIG. S1. The distribution of the critical strain γc for various network models used in this study, as shown in the legend. The
blue and red colors correspond to the network’s lateral size of W = 16 and W = 25, respectively. As can be observed, by
increasing the system size, the distribution becomes narrower.

Fitting procedure for finding the critical exponents f and φ

To obtain the scaling exponent f , we use the modulus data at κ = 0 that are beyond the finite-size dominated
regime, i.e., we use the data that satisfy W & ξ or equivalently |∆γ| ×W 1/ν & 1. On the other end, for strains far
above the critical point, clearly the networks are outside the critical regime. This effect can be seen as a deviation
of the power law behavior. Moreover, we only fit our exponents for the largest system size, where this intermediate
regime is largest. Since K −Kc ∼ |γ− γc|f , we first compute the log of K −Kc and γ− γc and then we use the linear
fit function in the Curve Fitting package of MATLAB to find the exponent f , which is the slope of our fit. This is
done for every individual sample to obtain the full distribution for the exponent f . We report the standard deviation
of this distribution as the error for f . We recognize, however, that this is almost certainly an underestimate of the
real error.
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The exponent φ, on the other hand, is found by using the modulus data at finite bending rigidity κ > 0. We use
the data corresponding to κ = 10−5. Since below the critical strain, we expect that K ∼ κ|γ − γc|f−φ for networks
with finite κ, similar to the fitting procedure for finding f , we first compute the log of K and |γ − γc| for the data
that satisfy |∆γ| ×W 1/ν & 1, then by performing a linear fit we find the slope f − φ for every individual sample.
Note that the exponent f is already known from the central force data, thus we are able to obtain the exponent φ
for every sample. We use the mean value of f for obtaining φ exponents. We report the standard deviation of the
distribution of φ values as the error.

3D PD networks at z = 3.3

In this section, we present the finite-size analysis of the shear modulus discontinuity Kc (Fig. S2) as well as the
unscaled data for the differential nonaffinity δΓ (Fig. S3) for 3D PD networks at z = 3.3. As it can be observed in
Fig. S2, we find a decreasing trend of Kc as the system size W increases, in agreement with prior work in 2D [2, 4].

FIG. S2. The ensemble average of shear modulus discontinuity Kc for 3D PD networks at z = 3.3 versus the inverse of system
size 1/W . Similar to 2D networks, we find that Kc decreases as we increase W . However, due to large finite-size effects, our
data are not inconsistent with a vanishing Kc in the thermodynamic limit.
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FIG. S3. The differential nonaffinity parameter versus shear strain for 3D PD networks at z = 3.3 for different system sizes as
indicated in the legend. The finite-size scaling analysis of these data is shown in the main text.

3D RGG networks at z = 3.3

To construct random geometric graph (RGG) networks [5], we place N = W 3 nodes with random positions in a
periodic box of sided length W . We then iterate through all pairs of nodes, connecting nodes separated by distance
`ij according to a log-normal probability distribution P (`ij), such that ln(`ij) is normally distributed with mean
µ = ln(`0) and variance σ = 0.5. The probability of connecting two nodes separated by distance `ij is

P (`ij) =

{
0 for `ij < `min or `ij > `max

A(z) exp(−(ln(`ij/`0)2/(2σ2)) for `min ≤ `ij ≤ `max

(1)

in which `min = `0/2, `max = 3`0, and the prefactor A(z) is chosen so that the average connectivity of the final
network is z. A sample bond length probability distribution for a network with size W = 20 and connectivity z = 3.3
is shown in Fig. S4.

We note that the RGG model contains longer bonds than PD networks. As a result, for small system sizes, it is
possible for small connected clusters of nearly aligned bonds to span the length of the simulation box. These clusters,
which may comprise only a small fraction of the network’s bonds, nonetheless determine the critical strain at which
the K becomes nonzero. As a result, in some cases, such networks exhibit an apparent two-branch behavior, with
a regime of unusually low stiffness immediately above the critical strain followed by a more typical stiffening regime
at larger strains. Similar behavior has been observed in 2D triangular networks [2]. We demonstrate this effect for
a set of RGG network samples in Fig. S5. To calculate f for RGG networks, we removed samples exhibiting this
two-branch behavior from our ensemble. Since the shear modulus for the samples with a two-branch behavior cannot
be fit as a power law. Figure S6 b shows the finite-size scaling analysis of K for the RGG model at z = 3.3 after
removing these samples.

The finite-size analysis of the shear modulus discontinuity Kc for the RGG model is shown in Fig. S7. Similar to
the 3D PD model, we observe a decreasing trend of Kc as W increases. Figure S8 shows the behavior of the RGG
model with finite bending rigidity as well as a Widom-like collapse of the data using the obtained scaling exponents.
The unscaled differential nonaffinity parameter of this model at zero bending rigidity for different sizes is shown in
Fig. S9.
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FIG. S4. Bond length probability distribution for an RGG network of side length W = 20 and connectivity z = 3.3.

FIG. S5. The excess shear modulus versus the excess shear strain for 40 random samples of RGG networks at z = 3.3 and
W = 25. A significant number of samples exhibit a two-branch behavior, an artifact of this specific geometry at small sizes.
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(a)

(b)

FIG. S6. The finite-size scaling analysis of the RGG model at z = 3.3. (a) Showing the analysis by including all samples. (b)
The analysis after removing the random samples that exhibit two-branch behavior. We find an f = 0.92± 0.02 by averaging 5
samples of size W = 30. We used ν = (f + 2)/3.
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FIG. S7. The ensemble average of shear modulus discontinuity Kc for 3D RGG networks at z = 3.3 versus the inverse of system
size 1/W . Similar to 2D networks, we find that Kc decreases as we increase W . However, due to large finite-size effects, our
data are not inconsistent with a vanishing Kc in the thermodynamic limit.
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(a)

(b)

FIG. S8. (a) Differential shear modulus K for RGG networks with z = 3.3 and system size W = 30 at various bending stiffness
κ as shown in the legend. The inset shows the scaling behavior of K in the subcritical region, where K ∼ κ|γ − γc|−λ with
λ = φ− f . (b) A Widom-like scaling collapse of the data in (a). The inset shows the distribution of the scaling exponent φ.
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FIG. S9. The differential nonaffinity parameter versus shear strain for 3D RGG networks at z = 3.3 for different system sizes
as indicated in the legend. The finite-size scaling analysis of these data is shown in the main text.
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3D PD networks at z = 4.0

The following figures are showing the same analysis that has been performed in the main text for a different network
connectivity z = 4.0. The scaling exponents are close to what we obtained for networks at z = 3.3. These data again
confirm that the scaling relation f = dν − 2 works in 3D. For all of the following figures, the data are obtained by
averaging 40 random realizations.

FIG. S10. The ensemble average of shear modulus discontinuity Kc versus the inverse of system size 1/W for 3D PD networks
at z = 4.0. Similar to 2D networks, we find that Kc decreases as we increase W . By fitting a linear equation to the data (shown
as a solid blue line), we find a small intercept of 0.017 that is the shear modulus discontinuity in the thermodynamic limit.
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(a)

(b)

FIG. S11. (a) The differential shear modulus of 3D PD networks at z = 4.0 with size W = 30 for different values of bending
stiffness between bonds κ, as shown in the legend. As discussed in the main text, in the subcritical regime γ < γc we expect
K ∼ κ|γ − γc|f−φ. This has been plotted in the inset, f has been already obtained from the finite-size scaling plot of the
central-force networks and we find φ = 2.6± 0.1 using the data at κ = 10−5. (b) A Widom-like scaling collapse of the data in
(a). The inset shows the distribution of the scaling exponent φ.
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(a)

(b)

FIG. S12. (a) The differential nonaffinity parameter for various network sizes as shown in the legend for 3D PD networks at
z = 4.0. (b) The finite-size scaling collapse of the data in (a). The scaling exponents f and φ have been already obtained.
The correlation length exponent ν, however, is calculated using the hyperscaling relation f = dν− 2, which results in ν = 0.95.
This great collapse of nonaffine fluctuations confirms again that the hyperscaling relation holds in 3D networks.
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The effect of the shear direction

All the presented results of this study are obtained by shearing the networks in x direction in the x − z plane.
However, an important question can be asked about other shear directions and if different shear directions will give
different critical exponents. We address this question by shearing the networks in three different directions and
compare our findings. As can be seen from simulations of both PD and RGG networks at z = 3.3 and at a system
size of W = 16, various shear directions exhibit similar behavior (Fig. S13). This shows that the shear modulus K in
our network models behave isotropically even at a small size of W = 16. We also note that the two-branch behavior
is observed in all shear directions in the RGG model.

(a)

(b)

FIG. S13. The behavior of shear modulus in various shear directions as indicated in the legend for (a) 3D PD model at z = 3.3
and a system size W = 16 averaged over 40 random samples (b) 3D RGG model with the same z, W and number of random
samples.
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