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Affinely deforming isotropic network models

Consider a filament segment with initial orientation fi, under-
going deformation described by the tensor A(y). The deforma-
tion changes the filament’s length and orientation, resulting in a
tension 7 directed along its new orientation. Treating the fila-
ment as a linear elastic element with stretching modulus u and
initial length /) = 1, the tension vector is 7 = 7Aifi/ |Af|. For
the spring model, we utilize a linear Hookean force-extension
relation in which the filaments support both tension and com-
pression: T = 7, where 7, = u(JAfi| — 1). For the rope model,
we instead use a one-sided force-extension relation that is only
finite under tension: T = 7,, with
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Taking the average, over all initial filament orientations, of the
product of the i component of the tension, 7Ayn;/ |Af|, and the
line density of filaments crossing the j plane after the deforma-

tion, ﬁ/\jk”k, yields the stress tensor [1, 2],
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Since we consider only volume-conserving simple shear, detA =
1. Thus, for filaments in 3D with initial polar angle 6 and az-
imuthal angle ¢, the stress tensor is
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in which the deformation tensor for simple shear in 3D is
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and the transformed orientation vector is
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We compute the xz, xx, and zz components of the stress tensor
for the 3D case as follows:
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The integrals are taken over the ranges 0 < 6 < 27 and 0 <
¢ < m. To compare with our results for the 3D FCC network, we
use ¢ = 1 and initial line density p = \f’ corresponding to the
fully-connected FCC lattice with [y = 1 [3].

We repeat the same process for the 2D case, in which the de-
formation tensor for simple shear is
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The resulting components of the 2D stress tensor are calculated
as follows:
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Here, the integrals are taken over the range 0 < 6 < 2.

Principal strain axes for simple shear

For simple shear with deformation gradient tensor

10 vy
Ay)={010
001

, (14)

we can decompose A into a combination of a pure stretch U
and a rigid body rotation R, satisfying A = RU. From the right
Cauchy-Green tensor C = U? = AT A, we determine
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The eigenvalues of U are
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with corresponding eigenvectors
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Ay and A, correspond to the elongation [/, along the axes of
maximum extension and compression, respectively.
The rotation matrix R is determined as R = AU !,
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The maximum stretch direction then corresponds to v] =
Rwv,. In the limit of small strains, v{ is oriented at 6 = /4
above the x-axis, in the x-z plane.

Bending interaction models

Prior work has shown that network models with bond-bending
interactions (angle constraints between all nearest-neighbor
bonds) exhibit the same strain-driven critical behavior as net-
works with freely-hinging crosslinks (angle constraints between
only initially collinear nearest-neighbor bonds) [4, 5]. To em-
phasize that the details of the bending interactions do not in-
fluence our conclusions with regard to the normal stresses, we
consider the mechanics of phantomized triangular networks with
z = 3.4 and either freely-hinging crosslinks (bending along ini-
tially collinear fibers) or bond-bending interactions, both with
g =10". In Fig. S1, we show both K and the normal stresses
oii/v?* for each bending interaction type. We observe that the
networks show qualitatively similar behavior in both cases, with
K o % and 07 o ky* below the critical strain. The only apparent
difference is that the magnitudes of K and the normal stresses
are slightly higher for bond-bending networks than for networks
with freely-hinging crosslinks in the bending-dominated regime.
This is due to the additional angle constraints imposed by bond-
bending interactions.

Packing-derived networks with varying connectivity

In Fig. S2, we show both N;/(o;y) and K for 2D packing-
derived networks of size W = 100 with k = 107> and varying
z. We observe that, for individual samples, peaks in N /(o)
occur at the z-dependent critical strain. On average, the Lodge-
Meissner relation is satisfied.
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FIG. S1. Top: Differential shear modulus K vs. shear strain y for
2D phantomized triangular networks with z = 3.4, ¥ = 107° and
Omax = 0.4, with freely-hinging crosslinks and bending interactions only
along fibers (triangles) and with bond-bending interactions between all
nearest-neighbor bonds (circles). Bottom: Normal stresses o, and o,
both normalized by ¥, as a function of y for the same systems. Both K
and o; are higher in networks with bond-bending interactions than in
the same networks with freely-hinging crosslinks, due to the additional
angle constraints.
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FIG. S2. In 2D packing-derived networks with x = 10~> and varying z,
we observe either upward or downward peaks in N, /(o ,,y) (top) for in-
dividual samples at the z-dependent critical strain ., determined as the
inflection point of K vs y (bottom) plotted on a logarithmic scale. When
the stress is averaged over all samples, the network ensemble approxi-
mately satisfies the Lodge-Meissner relation, such that Ny /(o y,y) = 1
over the full strain range.



