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Affinely deforming isotropic network models

Consider a filament segment with initial orientation n̂, under-
going deformation described by the tensor Λ(γ). The deforma-
tion changes the filament’s length and orientation, resulting in a
tension τ directed along its new orientation. Treating the fila-
ment as a linear elastic element with stretching modulus µ and
initial length l0 = 1, the tension vector is τ = τΛn̂/ |Λn̂|. For
the spring model, we utilize a linear Hookean force-extension
relation in which the filaments support both tension and com-
pression: τ = τs where τs = µ(|Λn̂| − 1). For the rope model,
we instead use a one-sided force-extension relation that is only
finite under tension: τ = τr, with

τr =

µ(|Λn̂| − 1) (|Λn̂| > 1)
0 (|Λn̂| ≤ 1)

. (1)

Taking the average, over all initial filament orientations, of the
product of the i component of the tension, τΛilnl/ |Λn̂|, and the
line density of filaments crossing the j plane after the deforma-
tion, ρ

detΛΛ jknk, yields the stress tensor [1, 2],

σi j =
ρ

detΛ

〈
τ

ΛilnlΛ jknk

|Λn̂|

〉
. (2)

Since we consider only volume-conserving simple shear, detΛ =

1. Thus, for filaments in 3D with initial polar angle θ and az-
imuthal angle ϕ, the stress tensor is

σi j =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ
[
τ

ΛilnlΛ jknk

|Λn̂|

]
, (3)

in which the deformation tensor for simple shear in 3D is

Λ(γ) =

1 0 γ
0 1 0
0 0 1

 (4)

and the transformed orientation vector is

Λn̂ =

sin θ cosϕ + γ cos θ
sin θ sinϕ

cos θ

 . (5)

We compute the xz, xx, and zz components of the stress tensor
for the 3D case as follows:

σxz =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ
[
τ

(sin θ cosϕ + γ cos θ) cos θ
|Λn̂|

]
(6)

σxx =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ
[
τ

(sin θ cosϕ + γ cos θ)2

|Λn̂|

]
(7)

σzz =
ρ

4π

∫
ϕ

∫
θ

dθdϕ sin θ
[
τ

cos2 θ

|Λn̂|

]
(8)

The integrals are taken over the ranges 0 ≤ θ ≤ 2π and 0 ≤
ϕ ≤ π. To compare with our results for the 3D FCC network, we
use µ = 1 and initial line density ρ = 12

√
2
, corresponding to the

fully-connected FCC lattice with l0 = 1 [3].
We repeat the same process for the 2D case, in which the de-

formation tensor for simple shear is

Λ(γ) =

(
1 γ
0 1

)
(9)

and the transformed orientation vector is

Λn̂ =

(
cos θ + γ sin θ

sin θ

)
. (10)

The resulting components of the 2D stress tensor are calculated
as follows:

σxz =
ρ

2π

∫
θ

dθ
[
τ

(cos θ + γ sin θ) sin θ
|Λn̂|

]
(11)

σxx =
ρ

2π

∫
θ

dθ
[
τ

(cos θ + γ sin θ)2

|Λn̂|

]
(12)

σzz =
ρ

2π

∫
θ

dθ
[
τ

sin2 θ

|Λn̂|

]
(13)

Here, the integrals are taken over the range 0 ≤ θ ≤ 2π.

Principal strain axes for simple shear

For simple shear with deformation gradient tensor

Λ(γ) =

1 0 γ
0 1 0
0 0 1

 , (14)

we can decompose Λ into a combination of a pure stretch U
and a rigid body rotationR, satisfying Λ = RU . From the right
Cauchy-Green tensor C = U 2 = ΛTΛ, we determine

U =
1√

4 + γ2


2 0 γ

0
√

4 + γ2 0
γ 0 2 + γ2

 . (15)
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The eigenvalues of U are

λ1 =
γ +

√
γ2 + 4
2

, λ2 =
−γ +

√
γ2 + 4

2
, λ3 = 1 (16)

with corresponding eigenvectors

v1 =

(
1
2

(
−γ +

√
4 + γ2

)
, 0, 1

)

v2 =

(
1
2

(
−γ −

√
4 + γ2

)
, 0, 1

)

v3 = (0, 1, 0)

λ1 and λ2 correspond to the elongation l/l0 along the axes of
maximum extension and compression, respectively.

The rotation matrixR is determined asR = ΛU−1,

R =
1√

4 + γ2


2 0 γ

0
√

4 + γ2 0
−γ 0 2

 (17)

The maximum stretch direction then corresponds to v′1 =

Rv1. In the limit of small strains, v′1 is oriented at θ = π/4
above the x-axis, in the x-z plane.

Bending interaction models

Prior work has shown that network models with bond-bending
interactions (angle constraints between all nearest-neighbor
bonds) exhibit the same strain-driven critical behavior as net-
works with freely-hinging crosslinks (angle constraints between
only initially collinear nearest-neighbor bonds) [4, 5]. To em-
phasize that the details of the bending interactions do not in-
fluence our conclusions with regard to the normal stresses, we
consider the mechanics of phantomized triangular networks with
z = 3.4 and either freely-hinging crosslinks (bending along ini-
tially collinear fibers) or bond-bending interactions, both with
κ̃ = 10−5. In Fig. S1, we show both K and the normal stresses
σii/γ

2 for each bending interaction type. We observe that the
networks show qualitatively similar behavior in both cases, with
K ∝ κ̃ and σii ∝ κ̃γ

2 below the critical strain. The only apparent
difference is that the magnitudes of K and the normal stresses
are slightly higher for bond-bending networks than for networks
with freely-hinging crosslinks in the bending-dominated regime.
This is due to the additional angle constraints imposed by bond-
bending interactions.

Packing-derived networks with varying connectivity

In Fig. S2, we show both N1/(σxzγ) and K for 2D packing-
derived networks of size W = 100 with κ = 10−5 and varying
z. We observe that, for individual samples, peaks in N1/(σxzγ)
occur at the z-dependent critical strain. On average, the Lodge-
Meissner relation is satisfied.
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FIG. S1. Top: Differential shear modulus K vs. shear strain γ for
2D phantomized triangular networks with z = 3.4, κ̃ = 10−6 and
δmax = 0.4, with freely-hinging crosslinks and bending interactions only
along fibers (triangles) and with bond-bending interactions between all
nearest-neighbor bonds (circles). Bottom: Normal stresses σxx and σzz,
both normalized by γ2, as a function of γ for the same systems. Both K
and σii are higher in networks with bond-bending interactions than in
the same networks with freely-hinging crosslinks, due to the additional
angle constraints.
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FIG. S2. In 2D packing-derived networks with κ = 10−5 and varying z,
we observe either upward or downward peaks in N1/(σxzγ) (top) for in-
dividual samples at the z-dependent critical strain γc, determined as the
inflection point of K vs γ (bottom) plotted on a logarithmic scale. When
the stress is averaged over all samples, the network ensemble approxi-
mately satisfies the Lodge-Meissner relation, such that N1/(σxzγ) = 1
over the full strain range.


