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As a function of connectivity, spring networks exhibit a critical transition between floppy and rigid phases
at an isostatic threshold. For connectivity below this threshold, fiber networks were recently shown
theoretically to exhibit a rigidity transition with corresponding critical signatures as a function of strain.
Experimental collagen networks were also shown to be consistent with these predictions. We develop a
scaling theory for this strain-controlled transition.Using a real-space renormalization approach,we determine
relations between the critical exponents governing the transition, which we verify for the strain-controlled
transition using numerical simulations of both triangular lattice-based and packing-derived fiber networks.
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It has long been recognized that varying connectivity can
lead to a rigidity transition in networks such as those formed
by springlike, central force (CF) connections between
nodes. Maxwell introduced a counting argument for the
onset of rigidity for such systems in d dimensions with N
nodes, in which the number of degrees of freedom dN is
balanced by the number of constraints Nz=2, where z is
the average coordination number of the network [1]. The
transition at this isostatic point ofmarginal stability has been
shown to exhibit signatures of criticality. Such a balance of
constraints and degrees of freedom is important for under-
standing rigidity percolation and jamming [2–6]. Even in
networks with additional interactions that lead to stability
below the CF isostatic point, the mechanical response can
still exhibit strong signatures of criticality in the vicinity of
the CF isostatic point [7–10]. More recently, criticality has
been shown in fiber networks as a function of strain for
systems well below the isostatic point [11].
While both jammed particle packings and fiber networks

exhibit athermal (T ¼ 0) mechanical phase transitions and
superficially similar critical behavior, these systems have
strong qualitative differences. In particular, there is growing
evidence that the jamming transition is mean-field [6,12].
Goodrich et al. recently proposed a scaling theory and
performed numerical simulations of jamming, which both
demonstrate mean-field exponents and support the con-
clusion that the upper critical dimension du ¼ 2 for the
jamming transition [12]. In contrast, fiber networks to date
have shown distinctly non-mean-field behavior [8–11].
Although many aspects of the critical behavior of fiber
networks, including various critical exponents, have been
quantified, prior studies have been limited to simulations
and the development of effective medium theories.
Importantly, a theory has been lacking to identify critical

exponents or even scaling relations among exponents, in
order to understand the observed non-mean-field character
of the stiffening transition in fiber networks. Here, we
develop a scaling theory for both the subisostatic, strain
controlled transition, as well as the transition in z near the
isostatic point for athermal fiber networks. We derive
scaling relations among the various exponents and dem-
onstrate good agreement with numerical simulations.
Interestingly, our results imply that the upper critical
dimension for fiber networks is du > 2, in contrast with
jamming packings.
Near the isostatic point with average coordination

number z ¼ zc ¼ 2d, spring networks exhibit linear shear
moduli G that vary as a power of jz − zcj for z > zc
[6,7,13]. In the floppy or subisostatic regime with z < zc,
such systems can be stabilized by introducing additional
interactions [7,8] or by imposing stress or strain [14,15]. It
was recently shown that subisostatic networks undergo a
transition from floppy to rigid as a function of shear strain γ
[11,16]. Moreover, this fundamentally nonlinear transition
was identified as a line of critical points characterized by a
z-dependent threshold γcðzÞ, as sketched in Fig. 1(a).
Above this strain threshold, the differential or tangent
shear modulus K ¼ dσ=dγ scales as a power law in strain,
with K ∼ jγ − γcjf. Introducing bending interactions with
rigidity κ between nearest neighbor bonds stabilizes sub-
isostatic networks below the critical strain, leading to K ∼ κ
for γ < γc. Both of these regimes are captured by the
scaling form [17]

K ≈ jγ − γcjfG�ðκ=jγ − γcjϕÞ ð1Þ

for κ > 0, in which the branches of the scaling function
G� account for the strain regimes above and below γc.
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This scaling form was also shown to successfully capture
the nonlinear strain stiffening behavior observed in experi-
ments on reconstituted networks of collagen, a filamentous
protein that provides mechanical rigidity to tissues as the
primary structural component of the extracellular matrix
[16]. Collagen constitutes an excellent experimental model
system on which to study this transition, as it forms elastic
networks that are deeply subisostatic (z ≈ 3.4 [18], whereas
zc ¼ 6 in 3D) in which individual fibrils have sufficiently
high bending moduli to be treated as athermal elastic rods.
Scaling theory.—For the strain-controlled transition at a

fixed z < zc [arrow A in Fig. 1(a)], we define a reduced
variable t ¼ γ − γc that vanishes at the transition and let
hðt; κÞ denote the Hamiltonian or elastic energy per unit
cell. This energy depends on the bending stiffness κ that
also vanishes at the transition. Assuming that the system
becomes critical as t, κ → 0, we consider the real-space
renormalization of the system when scaled by a factor L to
form a block or effective unit cell composed of Ld original
cells, where d is the dimensionality of the system [19].
Under this transformation, the energy per block becomes
hðt0; κ0Þ ¼ Ldhðt; κÞ, where t0 and κ0 are renormalized
values of the respective parameters. We assume that
the parameters evolve according to t → t0 ¼ tLx and
κ → κ0 ¼ κLy, where the exponents x, y can be assumed
to be positive, since the system must evolve away from
criticality. Combining these, we find the elastic energy

hðt; κÞ ¼ L−dhðtLx; κLyÞ: ð2Þ

The stress is simply given by the derivative with respect
to strain of the elastic energy per volume, which is
proportional to hðt; κÞ. Thus, σ∼ ð∂=∂γÞh∼ ð∂=∂tÞhðt;κÞ∼
L−dþxh1;0ðtLx;κLyÞ and the stiffness

K ¼ ∂
∂γ σ ∼

∂2

∂t2 hðt; κÞ ∼ L−dþ2xh2;0ðtLx; κLyÞ; ð3Þ

where hn;m refers to the combined nth partial with respect
to t andmth partial with respect to κ of h. Being derivatives
of the energy with respect to the control variable γ, the
stress and stiffness are analogous to the entropy and heat
capacity for a thermal system with phase transition con-
trolled by temperature. If we let L ¼ jtj−1=x, then the
correlation length scales according to ξ ∼ L ∼ jtj−ν, from
which we can identify the correlation length exponent
ν ¼ 1=x. Thus, the stiffness can be expressed as in Eq. (1),
where G�ðsÞ ∼ h2;0ð�1; sÞ and

f ¼ dν − 2 and ϕ ¼ yν: ð4Þ

The first of these is a hyperscaling relation analogous to
that for the heat capacity exponent for thermal critical
phenomena, but with the opposite sign. Thus, f > 0
corresponds to nonlinear stiffness K that is nondivergent.
For γ > γc, we expect that h2;0ð1; sÞ is approximately
constant for s≪1, so that K ∼ jγ − γcjf, while for γ < γc
we expect that h2;0ð−1; sÞ ∼ s for s ≪ 1, so that

K ∼ κjγ − γcj−λ; ð5Þ

consistent with a bending-dominated regime. Moreover, the
susceptibilitylike exponent is expected to be λ ¼ ϕ − f.
Near the critical strain, athermal networks exhibit large,

nonaffine internal rearrangements in response to small
changes in applied strain [11,16]. These nonaffine strain
fluctuations are analogous to divergent fluctuations in other
critical systems. In response to an incremental strain step
δγ, the nonaffine displacement of the nodes is expected to
be proportional to δγ. Thus, the nonaffine fluctuations can
be captured by δΓ ∼ hjδu − δuAj2i=δγ2, where δu − δuA

represents the deviation relative to a purely affine displace-
ment δuA. For large systems with small κ, δΓ diverges as
t → 0 [16]. Since the nonaffine displacements δu2 are
determined by the minimization of hðt; κÞ, for small κ,
h ∼ κδu2 ∼ κδγ2δΓ. Thus, the nonaffine fluctuations are
predicted to diverge as

δΓ ∼
∂
∂κ

∂2

∂t2 hðt; κÞ ∼ jtj−λ; ð6Þ

with the same exponent λ ¼ ϕ − f as in Eq. (5).
Computational model.—To test the scaling relations

derived above, we study two complementary models of
fiber networks: triangular lattice-based networks and
jammed packing-derived networks. Our triangular net-
works consist of fibers of length W arranged on a periodic
triangular lattice with lattice spacing l0 ¼ 1, with freely
hinging crosslinks attaching overlapping fibers. To avoid
system-spanning straight fibers, we initially cut a single

(a) (b)

(c)

FIG. 1. (a) Schematic phase diagram depicting the state of
mechanical rigidity of a central force network as a function of
coordination number z and applied shear strain γ. The arrow A
depicts the strain-controlled transition and B depicts the transition
at the isostatic point. With the addition of bending interactions,
the floppy region becomes instead bending-dominated, but the
critical curve γcðzÞ vs z remains the same. (b) Portion of a a
triangular network and (c) a 2D packing-derived network, both
diluted to z ¼ 3.3 < zc.
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randomly chosen bond on each fiber, yielding an initial
network coordination number z approaching 6 from below
with increasing W [8,20]. We prepare packing-derived
networks by populating a periodic square unit cell of side
length W with N ¼ W2 randomly placed, frictionless
bidisperse disks with soft repulsive interactions and with
a ratio of radii of 1∶1.4. The disks are uniformly expanded
until the point at which the system develops finite bulk and
shear moduli, after which a contact network excluding
rattlers is generated [6,21,22]. Sufficiently large networks
prepared using this protocol have an initial connectivity
z ≈ zc [23].
For both network structures, we reduce z to a value

below the isostatic threshold by bond dilution and removal
of dangling ends [24]. We use a random dilution process, in
contrast with special cutting protocols that have been used
previously to suppress variation in local connectivity and
promote mean-field behavior [7,31]. Unless otherwise
stated, we use triangular networks of size W ¼ 140 and
packing-derived networks of size W ¼ 120, both with
z ¼ 3.3, and simulate ensembles of at least 30 network
realizations each. Sample network structures are shown in
Figs. 1(b) and 1(c).
We treat each bond as a Hookean spring with 1D

modulus μ, such that the contribution of stretching to
the network energy is

HS ¼
μ

2

X

hiji

ðlij − lij;0Þ2
lij;0

; ð7Þ

in which lij and lij;0 are the length and rest length,
respectively, of the bond connecting nodes i and j.
Bending interactions are included between pairs of
nearest-neighbor bonds, which are treated as angular
springs with bending modulus κ. For triangular networks,
bending interactions are only considered between pairs of
bonds along each fiber, which are initially collinear,
whereas for packing-derived networks we account for all
nearest-neighbor bonds. The contribution of bending to the
network energy is

HB ¼ κ

2

X

hijki

ðθijk − θijk;0Þ2
lijk;0

; ð8Þ

in which θijk and θijk;0 are the angle and rest angle,
respectively, between bonds ij and jk, and lijk;0 ¼
ðlij;0 þ ljk;0Þ=2. We set μ ¼ 1 and vary the dimensionless
bending stiffness κ [32].
We apply incremental quasistatic simple shear strain

steps using Lees-Edwards periodic boundary conditions
[33], minimizing the total network energy H ¼ HS þHB
at each step using the FIRE algorithm [34]. We compute the
stress tensor as

σαβ ¼ −
1

A

X

i

fi;αui;β; ð9Þ

in which ui is the position of node i, fi is the total force
acting on node i, and A is the area of the system [24,35,36].
For the triangular lattice, A ¼ ð ffiffiffi

3
p

=2ÞW2, and for packing-
derived networks, A ¼ W2. The differential shear modulus
K is computed as K ¼ ∂σxy=∂γ. To symmetrize K, we
shear each network in both the γ > 0 and γ < 0 directions.
Figure 2(a) shows KðγÞ for triangular networks with
varying bending rigidity.
Results.—First, we consider the scaling of K as a

function of strain near γc. We determine γc for individual
samples as the strain corresponding to the onset of finite K
in the CF (κ ¼ 0) limit, and utilize the mean of the resulting
distribution, hγci, for our scaling analysis. The γc distri-
bution for triangular networks of sizeW ¼ 140 is shown in
Fig. 2(a). We observe that with increasing system size, the
width of the γc distribution decreases [24]. The stiffness K
exhibits a small discontinuity at γc for κ ¼ 0, as shown in
Fig. 2(a), consistent with prior reports in similar networks
[37,38]. We note that this discontinuity is, however,
consistent with the critical nature of the transition, since
K is not an order parameter.
We then determine f from K ∼ jγ − γcjf in the low-κ

limit. We obtain a distribution of estimated f values using
sample-specific K curves and γc values for networks with
κ ¼ 0, yielding an estimate of f ¼ 0.73� 0.04 for triangu-
lar networks, as shown in Fig. 2(b) with decreasing κ.
Similarly, for packing-derived networks we find f ¼
0.68� 0.04 [24]. We then estimate ϕ by averaging values
computed from two separate scaling predictions, as fol-
lows. For γ < γc, we show the results for Eq. (5) in the inset
to Fig. 2(b). We also note that continuity of K as a function
of strain near γc requires that G�ðsÞ ∼ h2;0ð�1; sÞ ∼ sf=ϕ
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FIG. 2. (a) Differential shear modulus K vs shear strain for
triangular networks of connectivity z ¼ 3.3, with varying reduced
bending stiffness κ. The dashed line indicates the observed
critical strain γc for the ensemble. The inset shows the probability
distribution of γc for 50 individual network samples with κ ¼ 0.
(b) For γ > γc and with decreasing κ, K converges to the form
K ∼ jγ − γcjf, with f ¼ 0.73� 0.04. These data are for the same
networks as in (a). Inset: In the low-κ limit and below γc, K=κ
converges to a power law in jΔγj with exponent f − ϕ ≈ −1.5.
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for large s. Thus, KðγcÞ ∼ κf=ϕ, as shown in the insets of
Figs. 3(a) and 3(b). Averaging the ϕ values computed from
these corresponding fits, and using our previously deter-
mined values for f, we estimate ϕ ¼ 2.26� 0.09 for
triangular networks and ϕ ¼ 2.05� 0.08 for packing-
derived networks. These values of f and ϕ are used in
Figs. 3(a) and 3(b), which demonstrate the collapse
according to Eq. (1) [39].
We compute the nonaffine fluctuations δΓ as

δΓ ¼ 1

Nl2cδγ2
X

i

kδuNA
i k2; ð10Þ

in which N is the number of nodes, lc is the average bond
length, and δuNA

i ¼ δui − δuA
i is the nonaffine component

of the displacement of node i due to the incremental strain
δγ. Plotting δΓ vs γ − γc in Fig. 4(a), we observe agreement
with the scaling predicted from Eq. (6) using the f and ϕ
values determined above. Importantly, as predicted, the
corresponding critical exponent λ ¼ ϕ − f is the same as
for Eq. (5), with λ ≃ 1.5 [40]. Further, we observe that near
γc, the expected scaling δΓðγcÞ ∼ κf=ϕ−1 appears to be
satisfied [24].
It is apparent from Fig. 4(a) that the divergence of the

fluctuations near γc is suppressed by finite-size effects. This
is consistent with a diverging correlation length ξ ∼ jtj−ν.
Critical effects such as the divergence of δΓ are limited as
the correlation length becomes comparable to the system
size W, corresponding to a value of t ∼ tW ¼ W−1=ν. Thus,
the maximum value of δΓ increases as δΓ ∼Wðϕ−fÞ=ν
[Fig. 4(a) inset]. From least-squares fits to this scaling
for both triangular and packing-derived networks with
κ ¼ 0 and κ ¼ 10−7, combined with our estimates for ϕ
and f, we determine that ν ¼ 1.3� 0.2 for both systems.
We then verify that this leads to a scaling collapse in a plot
of δΓWðf−ϕÞ=ν vs tW1=ν for both systems with κ ¼ 0, as
shown in Fig. 4(b), and with finite κ [24]. This finite-size

scaling is consistent with the (hyperscalinglike) relation
f ¼ 2ν − 2 in 2D from Eq. (4).
Near the isostatic point.—For networks near the isostatic

transition at z ¼ zc, we define a dimensionless distance
Δ ¼ z − zc from the isostatic point and let hðγ; κ;ΔÞ be the
Hamiltonian or elastic energy per unit cell. At the isostatic
point, since γc ¼ 0, t above reduces to the strain γ.
Assuming the system becomes critical as γ; κ;Δ → 0, we
can follow a similar real-space renormalization procedure
as above, resulting in

hðγ; κ;ΔÞ ¼ L−dhðγLx; κLy;ΔLwÞ: ð11Þ

Although the exponents x, y, and w at the isostatic point can
be assumed to be positive, we do not necessarily assume the
same values of the exponents x and y as determined for
the strain-controlled transition. We can again determine
the stress σ and stiffness K as in Eq. (3). By letting
L ¼ jΔj−1=w, we again identify the correlation length
exponent ν0 ¼ 1=w and find

K ∼ jΔjf0h2;0;0ð0; κ=jtjϕ0
;�1Þ; ð12Þ

where

f0 ¼ ðd − 2xÞν0; ϕ0 ¼ yν0: ð13Þ

Moreover, following similar arguments as above, it can be
shown that δΓ ∼ jΔj−λ0 , where λ0 ¼ ϕ0 − f0 [24,41], con-
sistent with the values f0 ≃ 1.4� 0.1, ϕ0 ≃ 3.0� 0.2,
ν0 ≃ 1.4� 0.2, and λ0 ≃ 2.2� 0.4 reported in Ref. [8].
While our approach uses the elastic energy, it is interesting
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FIG. 3. Plotting the K vs jΔγj data for both (a) triangular
networks and (b) packing-derived networks according to the
Widom-like scaling predicted by Eq. (1), and using the values of
f and ϕ determined previously, yields a successful collapse for
both systems. Dashed lines have slope 0 and dotted lines have
slope 1. Insets: At the critical strain, K ∼ κf=ϕ.
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to note that prior work on rigidity percolation has suggested
the use of the number of floppy modes as a free energy [42].
Conclusion.—The scaling theory and relations derived

here for the strain- and connectivity-controlled rigidity
transitions in athermal fiber networks are consistent with
our numerical results, as well as prior results near the
isostatic point [8–10]. Interestingly, for the subisostatic,
strain-controlled transition, we observe that simulations of
both triangular and packing-derived networks exhibit con-
sistent non-mean-field exponents. This, together with
agreement with the hyperscaling relation in Eq. (4) suggest
that the upper critical dimension for fiber networks is
du > 2, in contrast with jammed packings at the isostatic
point [12]. Our observations, combined with prior evidence
of similar exponents for alternate subisostatic network
structures, including 2D and 3D phantom networks,
honeycomb networks, and Mikado networks [11,43],
suggest that non-mean-field behavior might be ubiquitous
in randomly diluted subisostatic networks. Interestingly,
the hyperscaling relation in Eq. (4), together with the
observation that f > 0, suggests that fiber networks satisfy
the Harris criterion [44], which would imply that such
networks should be insensitive to disorder. Further work
will be needed to test this hypothesis, as well as the scaling
relations derived here in 3D.
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