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I. Network generation

After generating each initial network structure as described below, we reduce the connectivity z to the

desired value by randomly removing bonds and any resulting dangling ends.

Mikado networks [1, 2] are prepared by depositing fibers of length L with random locations and ori-

entations into a 2D periodic square unit cell of side length W and adding freely hinging crosslinks at all

fiber intersections. We use L = 4 and W = 30 and continue depositing fibers until the average coordina-

tion number, after the removal of dangling ends, is z ≈ 3.6. This yields an average crosslink density of

L/`c ≈ 11, where `c is the average distance between crosslinks. We impose a minimum segment length

`min = W/1000.

2D and 3D packing-derived networks are prepared as in prior work [3]. For 2D PD networks, we

randomly place N = W2 radially bidisperse disks with r ∈ {r0, φr0} in a periodic square unit cell of side

length W and incrementally increase r0 from 0, allowing the system to relax at each step, until the packing

becomes isostatic and develops a finite bulk modulus. We use φ = 1.4 to avoid long-range crystalline order

[4]. At this point, we generate a contact network between overlapping disks. For 3D PD networks, we

follow the same procedure beginning with N = W3 radially bidisperse spheres, also with r ∈ {r0, φr0} and

φ = 1.4, in a periodic cubic unit cell of side length W . We use W = 20 in 3D and W = 100 in 2D. For

sufficiently large systems, this yields a network with initial coordination number z ≈ 2d [5–7], in which d

is the dimensionality.

We generate 3D Voronoi networks by randomly distributing N seed points in a periodic cubic unit cell

of side length W , from which we generate a Voronoi diagram using the CGAL library [8]. We choose N so

that the final network has roughly W3 nodes, with W = 15. These have initial average coordination number

z = 4.

Three-dimensional random geometric graph (RGG) models have been shown to capture the microme-

chanics of collagen and fiber networks [9]. Following Ref. [9], we generate RGGs of N = W3 vertices in a
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periodic box of side length W , where each pair of nodes is connected with probability Pc ∝ e−`/L/`2, where

` is the distance between two vertices and L = 1 is the length scale of a typical bond. We impose a mini-

mum bond length of `min = 0.5. We generate RGG networks with W = 20 and initial average coordination

number z = 4.

II. Midpoints

The amount of contraction induced by the onset of stiffening depends on the resistance of the network

to lateral compression. Mikado and 2D PD networks with relatively high values of z exhibit less dramatic

contraction upon transitioning to the stretching-dominated regime than those with lower z. This is a conse-

quence of the fact that more dilute (lower z) networks have fewer highly connected regions within them and

are thus less resistant to compression than more highly connected networks. To verify that this is the case, in

Fig. S1, we consider the same Mikado structures as in Fig. 3, in which we have now added a midpoint hinge

to each bond in order to allow the buckling of individual bonds with the same bending energy penalty as is

used between adjacent bonds. While the location of the transition in strain is still controlled by connectivity,

networks with midpoints contract more dramatically at the critical strain than those without midpoints (for

fixed κ̃), with larger corresponding peaks in ν̃. This is because the normal stress induced by transverse com-

pression in networks with midpoints is strictly proportional to the bending rigidity κ, whereas in networks

without midpoints there can be additional, stronger contributions (∝ µ) from locally stiff regions at large

compression levels.
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FIG. S1. Transverse strain ε⊥ as a function of applied extensional strain ε‖ for Mikado networks with κ̃ = 10−5 and

varying connectivity z (a) without buckling of individual bonds and (b) with buckling of individual bonds, in which

an extra node is added at the midpoint of each bond. The dashed line indicates the isochoric transverse strain, with

the region above corresponding to an increase in volume (∆V > 0) and the region below corresponding to a decrease

in volume (∆V < 0). Inset: Incremental Poisson’s ratio ν̃ as a function of ε‖ for networks with midpoints. The

corresponding plot for Mikado networks without midpoints is shown in Fig. 3a.

III. Energy contributions for networks with fixed z and varying κ̃

In Fig. S2, we plot the fractional contribution of bending to the total network energy, Hb/H , for a 2D

packing-derived network with varying κ̃. In the low-κ̃ limit, we observe a clear transition from a bending-

dominated to stretching-dominated regime at the critical strain, corresponding to the maximum value of the

incremental Poisson’s ratio ν̃.
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FIG. S2. Bending energy fraction Hb/H for a 2D packing-derived network with z = 3.2, W = 100 and varying κ̃.

The dotted line represents the critical strain ε‖,c corresponding to the peak in the incremental Poisson’s ratio.

IV. Critical scaling

For subisostatic networks in the limit of small applied strain ε‖ , the differential Young’s modulus Ẽ =

∂σ‖/∂ε‖ is proportional to the bending rigidity κ̃. Above the critical applied strain ε‖,c, Ẽ is independent

of κ̃ and scales as a power law with respect to the distance (along the strain axis) to the critical strain, i.e.

Ẽ ∝ |∆ε‖ | f , where ∆ε‖ = ε‖ − ε‖,c. Following prior work [10], we can capture both regimes with the

scaling form

Ẽ
V
V0
∝ |∆ε‖ |

fG±

(
κ̃

|∆ε‖ |φ

)
(1)

in which the scaling function G± has branches corresponding to positive and negative values of ∆ε‖ , and

the factor V/V0 corrects for the change in Ẽ due to the change in the system’s volume V from the initial

volume V0. In Fig. S3a, we show stiffening curves for a large packing-derived network with varying κ̃ and

demonstrate scaling collapse according to the above scaling form with f = 0.55 and φ = 2.5 (see Fig. S3b).

Recent work has described a hyperscaling relation between the stiffening exponent f , the dimensionality

d, and the correlation length exponent ν, [11]

f = dν − 2, (2)

and predicts that, at the critical strain, the differential nonaffinity should scale with system size W as

max(δΓ) ∝ W (φ− f )/ν . (3)

Determining ν from Eq. 2 using d = 2 and f = 0.55 (from the prior scaling collapse of Ẽ), we observe good
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FIG. S3. (a) Stiffening curves for a 2D packing-derived network with varying κ, z = 3.2, W = 140. (b) Collapse of

the curves in (a) according to Eq. 1 with exponents f = 0.55 and φ = 2.5.

agreement between measured values of max(δΓ) and the predicted scaling of the differential nonaffinity with

system size (see Fig. S4).
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FIG. S4. In the low-κ̃ limit, the magnitude of the differential nonaffinity at the critical strain, max(δΓ), grows with

increasing system size W as max(δΓ) ∝ W (φ− f )/ν (solid line), with f = 0.55 and φ = 2.5 obtained from the scaling

collapse of the differential Young’s modulus and ν = ( f + 2)/d with dimensionality d = 2, as derived in Ref. [11].

These data correspond to averages over 2D packing-derived networks with z = 3.2 and κ̃ = 10−6.
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V. Boundary conditions

Whereas we have exclusively considered periodic systems in this work to avoid boundary effects, we

note that real systems are of course non-periodic. In experiments, strain is typically applied via fixed

upper and lower boundaries, resulting in necking. Properly measuring transverse strain as a consequence

of applied strain in experiments requires a sample with a sufficiently large aspect ratio (ratio of length

along the applied strain axis to width along the transverse axes) to mitigate the influence of boundary

effects. Prior experimental work [12] has addressed this issue by considering the strain within the necked

region of a stretched cylindrical sample with a large aspect ratio. For a non-periodic simulated network

with a sufficiently large aspect ratio, we expect that the strains in the center of the necked region should

quantitatively agree with the corresponding strain in a sample with periodic boundary conditions (PBC).

Smaller aspect ratios, however, are expected to reduce the apparent Poisson’s ratio.

To test these assumptions, we generated periodic packing-derived according to the methods described

in Section I above, with the initial network structure generated from N = 10000 radially bidisperse disks

in a periodic box of aspect ratio α with initial dimensions Ly = αLx , where LxLy = N . After diluting the

resulting network to z = 3, we cut all boundary-crossing bonds to yield a non-periodic network. We then

designated the nodes on the top and bottom boundaries of the network as “fixed,” and applied quasistatic

strain to the sample by deforming the “fixed” nodes affinely according to the desired applied extension

ε‖ and minimizing the energy of the network at each applied strain. This results in a “necked” network

configuration, as shown in Fig. S5, with the amount of apparent necking increasing with the aspect ratio.

To obtain a coarse-grained estimate of the transverse strain within the necked region, we first bin the node

coordinates according to their y-values into 100 equally spaced bins spanning the height of the network.

We then measure the width of the network in each height bin as the difference between the maximum and

minimum x-coordinates of the nodes within the bin. and measure the transverse strain ε⊥ = w/w0−1 as the

fractional change in the average width w of the middle 10% of bins (the center of the necked region) with

respect to its initial value w0. In Fig. S5c, we demonstrate that this effective transverse strain approaches

that achieved with periodic boundary conditions as we increase the aspect ratio of the network sample. This

indicates that “smearing out” of the phase transition due to necking does indeed occur if the aspect ratio of

the sample is small, resulting in a smaller apparent Poisson’s ratio (as shown in Fig. S5d), but that the results

become equivalent when the aspect ratio is increased sufficiently (as in the experiments of Ref. [12]). We

note that this results in a slight downward shift of the apparent critical strain, which can be understood as a

result of the higher effective extensional strain near the center of a sample with fixed boundary conditions

for a given global extensional strain.
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FIG. S5. (a-b) Non-periodic networks with fixed nodes (solid black circles) at the upper and lower boundaries exhibit

necking under applied extensile strain. We consider networks with κ = 10−4, generated from packings of N = 10000

bidisperse disks in periodic boxes of initial width Lx and height Ly , in which LxLy = N , with varying aspect ratio

α = Ly/Lx . These networks are then diluted to z = 3 and made non-periodic by cutting bonds that cross the

boundaries. We affinely deform the “fixed” nodes by extensile strain ε, and the energy of the network is subsequently

minimized with the positions of the “fixed” nodes held constant. The transverse strain ε⊥ is measured as the change in

width of the center of the network, as described above, as a function of applied extensile strain ε‖ . (c) We find that as

the sample aspect ratio is increased, the ε⊥ vs. ε‖ curves for non-periodic samples approach the corresponding curve

for a periodic networks with Lx = Ly . (d) Likewise, the incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ approaches that

of the periodic samples. These data correspond to an average over 15 samples each.

VI. Excluded volume

We have thus far ignored excluded volume effects, as these are generally unimportant for networks of

filamentous proteins such as collagen and fibrin due to the very low network volume fractions involved

(typically less than 1%) and the suppressed bending fluctuations of such fibers. Especially for collagen
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networks, models such as the present one have been shown to be quantitative and predictive, both in the

linear regime and even far into the nonlinear regime.

To explore the influence of excluded volume effects on the nonlinear Poisson effect, we now consider

simulations of 2D packing-derived networks with Nm equally spaced midpoint nodes on each bond, with

and without including harmonic repulsive interactions between nodes (in this case, each node is treated as

a repulsive disk with radius r = 0.8/(2(Nm + 1)) and repulsive spring constant kr = 1, which is sufficiently

large to prevent any bonds from interpenetrating at the strains we are considering). In Fig. S6a-b, we show

images of sections of a network with Nm = 5 midpoints per bond.

In Fig. S6c, we show strain curves for networks of side length L = 60 with connectivity z = 3.2 and

bending rigidity κ = 10−5, in which we vary the number of midpoints per bond Nm between 1 and 5. For

networks without repulsive interactions, the number of midpoints has essentially no effect on the strain

curves (Fig S6c) or the corresponding incremental Poisson ratio (Fig S6d). When repulsive interactions are

included, the excluded volume effect is significant for small Nm (i.e. large node radius and large effective

bond thickness), but it becomes much less significant as Nm is increased. Further increasing Nm would

result in the curves more closely resembling those of networks without repulsive interactions. For node

radius r , we can approximate bonds as rods of width 2r , so we can estimate an effective area fraction φ for

a network with 2D line density ρ (bond length per area) and node radius r as φ = 2ρr . For connectivity

z = 3.2, the 2D line density of our PD networks is ρ ≈ 1.4, so we have an effective area fraction of φ ≈ 0.18

for Nm = 5 and φ ≈ 0.56 for Nm = 1. We note that these values are significantly larger than the volume

fractions of experimentally tested networks (φ < 0.005) [13, 14]. Since the effects of excluded volume in

our 2D simulations are already quite small at the relatively large area fraction of φ = 0.18, we conclude that

simulations of networks without excluded volume effects are reasonable for this study.
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FIG. S6. Portions of a 2D packing-derived network with κ̃ = 10−5, z = 3.2, and Nm = 5 midpoints per bond with

individual nodes acting as repulsive disks at (a) ε‖ = 0 and (b) ε‖ = 0.3. (c) Transverse strain ε⊥ as a function of

applied extensile strain ε‖ for networks with W = 60, z = 3.2, and κ̃ = 10−5, in which the number of midpoints Nm is

varied, with and without treating individual nodes as repulsive disks with radius r = 0.8/(2(Nm + 1)). (d) Incremental

Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ for the same networks.

VII. Growth of the critical strain with distance from isostaticity

In Fig. S7, we plot the critical strain ε‖,c as a function of the distance to the isostatic point, zc − z, for

15 samples of 2D packing-derived networks with W = 100 and κ̃ = 10−5. Here we determined the critical

strain ε‖,c for each sample as the inflection point of the stretching energy fractionHs/H when plotted as a

function of ε‖ . We find that ε‖,c ∝ (zc − z) close to the isostatic point, in agreement with prior observations

of the critical strain for packing-derived networks under shear strain [15]. This result may depend on the

network structure and/or dilution protocol.
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FIG. S7. The critical strain ε‖,c grows linearly with the distance to the isostatic point, zc − z, for 2D packing-derived

networks. These data correspond to 15 samples of 2D packing-derived networks with W = 100 and κ̃ = 10−5. Error

bars are ±1 standard deviation. The blue line corresponds to a linear fit of the 10 points closest to zc .

VIII. Sample configurations

We have also included a zipped folder config.zip containing sample network configurations for

each network type. A description of these files is available in the text file config readme.txt.
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