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Finite size effects in critical fiber networks†

Sadjad Arzash, ab Jordan L. Shivers ab and Fred C. MacKintosh *abc

Fibrous networks such as collagen are common in physiological systems. One important function of

these networks is to provide mechanical stability for cells and tissues. At physiological levels of

connectivity, such networks would be mechanically unstable with only central-force interactions. While

networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical

transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is

predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in

the shear modulus. We study the finite-size scaling behavior of this transition and identify both the

mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-

field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network

stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also

found in the self-averaging properties of fiber networks.

1 Introduction

In addition to common thermal phase transitions such as melting
or ferromagnetism, there are a number of athermal phase transi-
tions such as rigidity percolation1–3 and zero-temperature
jamming.4–8 These athermal transitions may even exhibit signa-
tures of criticality that are similar to thermal systems. In the case
of rigidity percolation, as bond probability or average connectivity
z increases on a random central-force network, the number of
floppy modes decreases by adding constraints until the isostatic
connectivity zc is reached, at which the system becomes rigid.
A simple counting argument by Maxwell shows that zc E 2d
where d is dimensionality.9,10 This linear rigidity transition has
been studied in random network models with additional bending
interactions.11–13 In general, floppy subisostatic central force net-
works can be stabilized by various mechanisms or additional
interactions such as extra springs,14 bending resistance,15 thermal
fluctuations,16,17 and applied strain.18,19 Sharma et al.20 recently
showed that networks with z o zc exhibit a line of critical floppy-
to-rigid transitions under shear deformation and that this line of
mechanical phase transitions can account for the nonlinear
rheology of collagen networks. The corresponding phase diagram
is schematically shown in Fig. 1, where the critical strain gc at the
transition is a function of connectivity z o zc.

Recent experiments21–24 have shown that collagen biopolymers
form networks that are in the subisostatic regime with z o zc.
It has also been shown that the rheology of such networks is
consistent with computational fiber network models that
include both strong stretching interactions and weak fiber
bending rigidity.20,22 Although even a weak bending rigidity
tends to suppress the critical signatures of the transition shown
in Fig. 1, the critical exponents can still be identified both
theoretically and experimentally in a way similar, e.g., to

Fig. 1 Rigidity phase diagram of central force networks. Upon increasing
the average connectivity z at g = 0, a network passes through three
distinct regimes: (i) a disconnected structure for connectivity less than
the percolation connectivity z o zp (ii) a percolated but floppy network
for zp o z o zc C 2d and (iii) a rigid network for connectivity greater than
zc. Applying a sufficiently large finite strain to an otherwise floppy network
with zp o z o zc rigidifies the system. For a given z in this range, a critical
transition is observed with increasing strain, as indicated by the dashed
arrow. The second-order line of transitions is characterized by a critical
strain gc(z) that varies linearly with z near zc

14 (see also Fig. S3, ESI†).
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ferromagnetism at non-zero applied field. To understand criti-
cality and finite-size effects in the strain-controlled transition,
we focus on fiber networks with purely central force interac-
tions as a function of shear strain g. At a critical strain gc, there
can be a small but finite discontinuity in the differential shear
modulus K = qs/qg, where s is the shear stress.25,26 Fig. 2 shows
the macroscopic modulus, shear stress and elastic energy of a
diluted triangular network as a function of the distance above
its critical strain. Although both elastic energy E and shear
stress s approach zero as Dg = g � gc approaches zero from
above, the stiffness K exhibits a finite discontinuity Kc. The left
inset of Fig. 2 shows K versus |Dg|f, where f a 1 is a non-mean-
field scaling exponent. The observed straight line in this linear
plot illustrates the critical scaling behavior of K near gc. More-
over, a distinct discontinuity in the modulus can be seen in the
right inset of Fig. 2, showing the region closer to gc. The scaling
behavior of K and the critical exponent f are more system-
atically studied in the later sections, where we study the finite-
size scaling of the discontinuity and its effect on the scaling
exponents, which have also previously been studied using a
complementary approach with the addition of small, non-zero
bending rigidity.20 Using these modified exponents, we test
scaling relations recently predicted for fiber networks.27

2 Simulation method

To investigate the stiffness discontinuity in fiber networks,
we use various network models including (i) triangular,
(ii) phantomized triangular,15,22 (iii) 2D and (iv) 3D jammed-
packing-derived,14,26,28–30 (v) Mikado,31,32 and (vi) 2D Voronoi
network.33,34 Triangular networks are built by depositing indi-
vidual fibers of length W on a periodic triangular lattice. The
lattice spacing is c0 = 1. A full triangular network has an average

connectivity of z = 6. In order to avoid the trivial effects of
system-spanning fibers, we initially cut a single random bond
from every fiber. Since the number of connections for a cross-
link in real biopolymer networks is either 3 (branching point)
or 4 (fiber crossing), we enforce this local connectivity
in phantomized triangular model. A single node in a full
triangular network has three crossing fibers. We phantomize
the network by detaching one of these fibers randomly for every
node.22,35 Therefore, a fully phantomized triangular network
has an average connectivity of z = 4. Similar to the triangular
network model, a random bond is removed from every fiber to
avoid system-spanning fibers.

We note that our lattice models are not generic, i.e., the
nodes are not displaced from an initial regular lattice. Although
generic lattices can be important for linear elasticity,3,36

the nonlinear elasticity studied here is insensitive to small
displacements in the initial configuration, as shown in ref. 37. This
is due to the fact that the transition we study occurs at a finite
strain threshold, by which significant nonaffine deformation has
occurred. 2D (3D) packing-derived networks are generated by
randomly placing N = W2 (W3) disks (spheres) in a periodic box
(cube) of length W. We use 50/50 bidisperse particle mixture with
radii ratio of 1.4. These frictionless particles interact via a harmonic
soft repulsive potential.38–40 The particles are uniformly expanded
until the system exhibits both non-zero bulk and shear moduli, i.e.,
the system is jammed at which a contact network excluding rattlers
is derived. This contact network shows an average connectivity of
z C zc. Mikado networks are constructed by populating a box of
size W with N fibers of length L. Permanent crosslinks are
introduced at the crossing points between two fibers. Because of
the preparation procedure for the Mikado model, the average
connectivity of the network approaches 4 from below as number
of fibers N increases. To construct Mikado networks, we choose a
line density of NL2/W2 C 7 that results in an average connectivity
of z C 3.4. The 2D Voronoi model is prepared by performing a
Voronoi tessellation of W2/2 random seeds in a periodic box with
side length of W, using the CGAL library.41 A full Voronoi network
has an average connectivity of z = 3.

For all network models, we randomly cut bonds until the
desired average connectivity z o zc is reached. Any remaining
dangling bonds are removed since they do not contribute to the
network’s stiffness. The random dilution process not only yields
a subisostatic network similar to real biopolymers but also
introduces disorder in the system. All crosslinks in our computa-
tional models are permanent and freely hinged. An example
image of each model is shown in Fig. S1 in ESI.† Among these
computational models, we note that the bond length distribu-
tion of Mikado and Voronoi models is similar to the observed
filament length distribution of collagen networks.21

In the above models, the bonds are treated as simple
Hookean springs. Therefore, the elastic energy of the network
is calculated as

E ¼ m
2

X
ij

‘ij � ‘ij;0
� �2

‘ij;0
; (1)

Fig. 2 Elastic energy E, shear stress s, and differential shear modulus K
versus excess shear strain to the critical point g � gc for a single realization
of a subisostatic triangular network with z = 3.3. We use the finite modulus
at the critical strain gc as the shear modulus discontinuity, i.e., Kc = K(gc).
Inset: A linear plot showing the scaling behavior of K for the same sample.
By zooming in this plot on the right side, we observe a distinct modulus
discontinuity Kc.
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in which m (in units of energy/length) is the stretching (Young’s)
modulus of individual bonds, cij and cij,0 are the current and
rest bond length between nodes i and j respectively. We note
that the rest lengths are defined as bond lengths after con-
structing the networks, i.e., prior to any deformation. The sum
is taken over all bonds in the network. We set m = 1 in our
simulations.

We apply simple volume-preserving shear deformations in a
step-wise procedure with small step size. The deformation
tensors in 2D and 3D are as follow

L2DðgÞ ¼
1 g

0 1

" #
; L3DðgÞ ¼

1 0 g

0 1 0

0 0 1

2
6664

3
7775 (2)

where g is the shear strain and the networks are sheared in
x-direction. Note that the 3D networks are deformed in x–z plane.

We assume a quasi-static process, i.e., the system reaches
mechanical equilibrium after each deformation step. Therefore,
after each strain step, we minimize the elastic energy in eqn (1)
using one of the multidimensional minimization algorithms
such as FIRE,42 conjugate gradient,43 and BFGS2 method from
the GSL library.44 To reduce finite size effects, we utilize periodic
boundary conditions in both directions. Moreover, we use Lees–
Edwards boundary conditions to deform the networks.45 After
finding the mechanical equilibrium configuration at each strain
step, we compute the stress components as follows27

sab ¼
1

2V

X
ij

fij;arij;b; (3)

in which V is the volume of simulation box, fij,a is the a
component of the force exerted on node i by node j, and rij,b is
the b component of the displacement vector connecting nodes i
and j. The differential shear modulus K is calculated as K = dsxy/dg
in 2D and K = dsxz/dg in 3D at each strain value. To remove
any possible asymmetry in K, we shear each realization in both
positive and negative shear strains. Unless otherwise stated, in
order to obtain reliable ensemble averages, we use at least 100
different realizations for every network model.

3 Results

By applying shear strain, the subisostatic networks with central
force interactions undergo a mechanical phase transition from
a floppy to a rigid state.20,46 In contrast to percolation- or
jamming-like transitions in which the system rigidifies due to
increasing number of bonds or contacts, fiber network models
have static structures. Therefore, this floppy-to-rigid transition
occurs because of the emergence of finite tension under
deformation, here shear strain. The transition point is a func-
tion of network’s geometry as well as network’s connectivity z
(see the schematic phase diagram in Fig. 1). As shown in Fig. 3,
a branch-like tensional structure appears at the critical strain
that is responsible for the network’s rigidity. This rigidity
mechanism can be understood in terms of the percolation of

these tensional paths. By computing the participation ratio c as
the ratio of bonds with non-zero force to all present bonds in
the network, we find that a large portion of the network is
under a finite force at the transition point (see Fig. 3b). To
calculate c we use the absolute value of bond forces | fij|, where
fij 4 0 corresponds to tension. The force distribution at the
critical strain is shown in the inset of Fig. 3b. The behavior
of this distribution is similar to (compressive) contact force
distributions in particle packings.38,39,47–49 Here, however, the
distribution shows that there are more tensile than compres-
sive forces at the critical strain, which stabilize the network.
Consistent with prior work,30 we find that the force distribution
decays exponentially at the critical strain.

To further understand this criticality in central force net-
works, we investigate the moments of force distribution that
are defined as

Mk ¼
1

Nb

X
ij

fij
�� ��k* +

; (4)

in which the angle brackets represent the ensemble average
over random realizations, Nb is the number of all bonds, and
|fij| = |m(cij � cij,0)/cij,0| is the magnitude of force on bond ij.

Fig. 3 (a) A small section of a triangular network with connectivity z = 3.3
at the critical strain g = gc. The gray bonds are those with zero force. Bonds
with larger forces have a brighter color. This branch-like force chain that
appears at the critical strain rigidifies the otherwise floppy network. (b) The
participation ratio c, the ratio of bonds under a finite force to all present
bonds, versus shear strain g for the network in (a). As shown, a large portion
of bonds undergoes a finite force at the critical strain, i.e., cc C 0.5. Inset:
The force distributions of the network in (a) at the critical strain, where h|f|i
is the average of absolute values of bond forces.
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Similar to the behavior of percolation on elastic networks,13,50–52

we find that the moments Mk obey a scaling law near the
critical strain

Mk B |g � gc|qk. (5)

This scaling behavior of the first three moments is shown in
Fig. S4 in ESI.† For a triangular network with z = 3.3, we find
that q1 = 1.3 � 0.1, q2 = 2.5 � 0.1 and q3 = 3.7 � 0.1.
Interestingly, we observe that qk C qk�1 + 1 for k 4 1. Note
that the zeroth moment of the force distribution is the parti-
cipation ratio c shown in Fig. 3b. The mass fraction of the
tensional backbone that appears at the critical strain is given by
the participation ratio or zeroth moment at gc.51,53 In plotting
the mass of the tensional structure at the critical strain versus
system size W, we find that the fractal dimension of this
backbone appears to be the same as the Euclidean dimension
of 2 (see Fig. S8 in ESI†).

Of particular interest are the macroscopic properties of
fiber networks such as stiffness K near the transition. As we
approach the critical point, we find that K shows a finite
discontinuity Kc, in agreement with prior work.25,26 Fig. 2 shows
the behavior of one random realization of a diluted triangular
network very close to its critical strain g � gc C 10�4. In order to
find the sample-specific critical point gc(W,i) for a network with
size W, we use the bisection method.26 By performing an initial
step-wise shearing simulation for every random sample, we first
find a strain value gR,i at which the network becomes rigid, i.e.,
the shear stress calculated from eqn (3) reaches a threshold
value. Here we use 10�9 for the stress threshold. Our results,
however, are insensitive to the choice of the threshold value as
long as we use a sufficiently small value. The prior strain value
to gR,i is considered as the nearest floppy point gF,i. Modifying
the bracket [gF,i, gR,i] in at least 20 bisection steps, we are able to
accurately identify the critical point for every random sample i.
After identifying the critical point, the network is sheared in a
step-wise manner from gc(W,i). Therefore, the final ensemble
averages of a specific system size are taken over random
realizations with the same distance from their critical strain.
Prior work has established that this is a suitable averaging
method for finite systems with large disorder.54

As shown previously25 for purely central-force networks, the
stiffness K exhibits a scaling behavior with the excess shear strain

K � Kc B |g � gc|f, (6)

in which Kc represents a discontinuity in the shear modulus at
the transition and f is a non-mean-field exponent. Subisostatic
networks with central force interactions are floppy below this
transition. In order to understand the behavior of networks in
g o gc regime, we introduce an additional bending rigidity.15,22,27

In the presence of a weak bending rigidity k, the floppy-to-
rigid transition in networks becomes a crossover between
bend-dominated and stretch-dominated regimes.20,27,46,55 In the
small strain regime g o gc, the shear modulus is proportional to
the bending rigidity k and the following scaling form captures the
behavior of K for bend-stabilized fiber networks20

K E |g � gc|fG�(k/|g � gc|f), (7)

in which f is a scaling exponent and G� is the scaling function
for regimes above and below the critical strain. In later sec-
tions, we discuss in detail the procedure of finding these
scaling exponents f and f.

With the scaling exponents f and f obtained, we repeat the
tests previously carried out for the scaling theory in ref. 27.
Specifically, we consider the finite-size scaling of the nonaffine
fluctuations of a diluted triangular network in Fig. 4. The
nonaffine displacements are measured by the differential non-
affinity parameter defined as

dG ¼
duNA
�� ��2� �
‘2dg2

; (8)

in which c is the typical bond length of the network, and duNA =
u � uaffine is the nonaffine displacement of a node that is
caused by applying an infinitesimal shear strain dg. To better
illustrate this parameter, we show the nonaffine displacement
vectors of nodes for a diluted triangular network before, at and
after the critical strain in Fig. S5 in ESI.† 46 The differential
nonaffinity dG diverges at the critical strain for central force
networks, with a susceptibility-like exponent l = f � f, i.e., dG
B |Dg|�l.27,46,56 Moreover, as the system approaches the
critical strain, the correlation length diverges as x B |Dg|�n.
When the correlation length is smaller than the system size W,
i.e., |Dg| � W1/n 4 1, we should find dG B |Dg|�l. Near
the critical strain, however, the finite-size effects result in
dG B |Dg|l/n. Therefore, the following scaling form must
capture the behavior of fluctuations46

dG = Wl/nH(DgW1/n), (9)

where the scaling function (x) is constant for |x| o 1 and |x|�l

otherwise. The differential nonaffinity is shown for different
system sizes of a diluted triangular network in Fig. S5 in ESI.†
Based on the above scaling form, we perform a finite-size

Fig. 4 The finite-size collapse of nonaffine fluctuations according to
eqn (9). The data are obtained for triangular networks with z = 3.3 and
different lateral size W as specified in the legend. Inset: Shows distributions
of the critical strain for the same networks.
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scaling analysis as shown in Fig. 4. The correlation length
exponent n is computed from the hyperscaling relation
f = dn � 2 obtained for this transition in prior work,27 using
the exponent f that is computed by considering the stiffness
discontinuity. This excellent collapse of fluctuations further
emphasizes the true critical nature of the transition as well as
consistency with the hyperscaling relation f = dn � 2 in fiber
networks, even accounting for the discontinuity in K. As noted
before, this discontinuity has no bearing on the order of the
transition, since K is not the order parameter, and is more
analogous to the heat capacity in a thermal phase transition.27

The inset of Fig. 4 shows the distribution of critical strains for
the same networks in the main figure. As system size increases, the
critical strain distribution becomes narrower. Although we
focus on finite-size effects in computational fiber models
primarily in order to properly identify the behavior of such
networks in the thermodynamic limit, we note that experimental
rheology on physical collagen networks can also be strongly
affected by the sample size, e.g., in sample size dependence of
the yield strain.57 This is likely due to the rather large mesh size
of order 10 mm in many of the experimental studies.

As indicated above, the exponent f is analogous to the heat
capacity exponent a in thermal critical phenomena, but with
opposite sign. Based on the Harris criterion,58 a positive f 4 0
(i.e., a o 0), for which n 4 2/d, implies that weak randomness
does not change the behavior of critical fiber networks. Closely
related to the Harris criterion is the self-averaging property in
critical phenomena. Any observable X = E, s or K has different
values for different random samples. Therefore for a system
with size W, we can define for observable X a probability
distribution function P(X,W), which is characterized by its
average hXi and variance V(X) = hX2i � hXi2. A system is self-
averaging if the relative variance RV(X) = V(X)/hXi2 - 0 as W -N.
In other words, the ensemble average of a self-averaging system
does not depend on the disorder introduced by random samples
as the system size becomes infinite.

Far from the transition, where the system size W is much
larger than the correlation length x, the Brout argument,59

which is based on the central limit theorem, indicates strong
self-averaging RV(X) B W�d where d is dimensionality.60

Indeed, for our 2D fiber networks away from the critical strain,
we find that the relative variance of macroscopic properties
decreases with system size as W�2, i.e., fiber networks exhibit
strong self-averaging off criticality (see Fig. 5b). Near the
transition, however, the correlation length becomes larger than
the system size W { x and the Brout argument does not
hold. Therefore, at criticality there is no reason to expect
RV(X) B W�d.60–62 For example, it is established that RV(X)
shows a W-independent behavior, i.e., no self-averaging at the
percolation transition for the mass of spanning cluster63 and
the conductance of diluted resistor networks.64 A weak self-
averaging, that corresponds to RV(X) B W�a with 0 o a o d,
has been identified in bond-diluted Ashkin–Teller models.60 As
proved by Aharony and Harris,61 when randomness is irrele-
vant, i.e., n 4 2/d the system exhibits a weak self-averaging
behavior where RX B Wa/n (in our fiber networks RX B W�f/n).

As shown in Fig. 5a, fiber networks appear to exhibit a weak
self-averaging at the critical strain, with an exponent close to
f/n. We note that RV(X) in Fig. 5a is computed in the regime
where |Dg| �W1/nE 1. We also find that the variance of critical
strains decreases as V(gc) B W�2 (see the inset of Fig. 5a), in
accordance with Aharony and Harris prediction.61

As prior work showed,14,26 the shear modulus discontinuity
Kc vanishes as network connectivity z approaches the isostatic
threshold zc = 2d. Fig. 6 shows the behavior of Kc versus network
connectivity z. As expected, Kc decreases as z approaches zc.
Moreover, as z decreases towards the connectivity percolation
transition for a randomly diluted triangular network, we
observe a decreasing trend in Kc. This regime can be explained
by plotting the participation ratio at the critical strain cc in the
inset of Fig. 6. As we see cc has a small value for networks with z
close to the percolation connectivity. These small tensional
patterns are responsible for the network’s rigidity at critical
strain, hence resulting in lower modulus discontinuity Kc.

In order to understand the network behavior in the thermo-
dynamic limit, we study the finite-size effects in more detail.

Fig. 5 (a) The relative variance of different quantities specified in the
legend at the critical strain for a triangular network with z = 3.3 versus
linear system size W. Inset: The scaling behavior of variance of critical
strains versus system size for the same model. (b) The relative variance of
the macroscopic quantities as specified in the legend for the same model
in (a) away from the critical strain versus linear system size W.
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One trivial finite-size effect is observed by studying the partici-
pation ratio c. For small number of random realizations, a
strand-like percolated force chain, which appears at the critical
strain, continues to bear tensions under deformation. This
effect results in a plateau in network stiffness K, as shown in
Fig. S7 in ESI.† This plateau effect is more prevalent in network
models with long, straight fibers such as the triangular model.
We next explore the finite-size effects of stiffness discontinuity
in fiber networks. The distributions of Kc for various system
size are shown in Fig. 7a. The mean of these distributions
versus inverse system size exhibits a slow decreasing trend for
all different network models (Fig. 7b). However, we find that
this discontinuity remains finite but small (of order 0.01) for
all network models as we approach the thermodynamic limit
1/W - 0, consistent with findings of ref. 25 for the Mikado
model. This is similar to the behavior of the linear bulk
modulus for sphere packings at the jamming transition, which
exhibits a finite discontinuity in z in the thermodynamic
limit.36,48,65,66 Vermeulen et al.25 argued that the nonlinear
shear modulus discontinuity in fiber networks is due to an
emerging single state of self-stress at the network’s critical
strain. Consistent with this, we find a non-fractal stress back-
bone at the critical strain.

As mentioned above, the stiffness exponent f has a non-
mean-field value, i.e., f a 1. In fiber networks, the correlation
length scales as x B Dg�n. True critical behavior in simulation
results such as ours should only be apparent when the correla-
tion length remains smaller than the system size, i.e., |Dg| �
W1/n 4 1.20,27 Near the critical point, however, the correlation
length diverges and the stiffness scales as K � Kc B W�f/n.
Therefore, the following scaling function captures the stiffness
behavior

K � Kc = W�f/nF(DgW1/n), (10)

in which the function F(x) is a constant for x o 1 and x f for
x 4 1. Note that we are only able to investigate one side of the
transition Dg 4 0 for central force networks.

To obtain the stiffness exponent f, we implement a power-law
fit of K � Kc versus g � gc for every individual sample of different
system sizes in the critical regime, where |Dg| � W1/n 4 1 for
every size W. We use sample-dependent Kc and gc. Fig. 8a shows
the f distributions for different system sizes for a triangular
network with z = 3.3. The average of these distributions are
shown in Fig. 8b. As can be observed, we find negligible
differences in f for different system sizes when the exponents
are obtained in the true critical regime. However, instead of this
size-dependent approach, if the scaling exponents f are collected
in a fixed strain window for all sizes, a size-dependent behavior
of f is unavoidable due to the finite-size effects (see Fig. S9 in
ESI†). We conclude an f = 0.79 � 0.07 corresponding to W = 140
for triangular networks with z = 3.3.

By performing an extensive finite-size scaling analysis of the
stiffness data for the diluted triangular model in Fig. 9a, we

Fig. 6 Shear modulus discontinuity versus connectivity z for a triangular
network. As connectivity z approaches the isostatic point zc, the jump in shear
modulus vanishes Kc - 0. On the other hand, for networks with low
connectivity, a small tensional pattern is responsible for the rigidity of the
system. Therefore, Kc decreases as z decreases towards the percolation
connectivity. Inset: Participation ratio at the critical strain versus connectivity z.

Fig. 7 (a) The distributions of shear modulus discontinuity Kc for triangular
networks with z = 3.3 and different system sizes as specified in the legend.
(b) Shear modulus discontinuity Kc versus inverse system size 1/W, for
various 2D network models as specified in the legend (for Mikado model
we used square root of present nodes in the network as W). The data are
normalized with the length density r for every model. The standard
deviations are only shown for the triangular network, though the standard
deviation at W = 60 for every model is shown in the legend.
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find three distinct regimes: (i) a finite-size dominated region for
|Dg| � W1/n t 1.0, (ii) a true critical regime for 1 t |Dg| � W1/n

and (iii) an eventual large strain regime outside of the critical
regime. By using the hyperscaling relation f = dn � 2, f is the
only remaining free parameter used for the analysis in Fig. 9a.
As shown in the inset of Fig. 9a, we are able to collapse the data
in the critical regime by using f = 0.79 � 0.07 for a randomly
diluted triangular network with z = 3.3. A similar finite-size
scaling analysis performed for randomly diluted, 2D jammed-
packing-derived networks with z = 3.3 in Fig. 9b results in a
consistent exponent f = 0.85 � 0.05. In agreement with compu-
tational studies in 3D,20,46 we also find a non-mean-field f o 1.0
for 3D jammed-packing-derived networks with z = 3.3 (see Fig.
S10 in ESI†). This exponent, however, is obtained using only
one system size W = 20. Further work will be needed for a
detailed finite-size scaling analysis in 3D similar to Fig. 9.
Nevertheless, prior work has shown a high degree of consis-
tency between the 2D and (the somewhat more limited) 3D
simulations. Moreover, experiments on collagen networks have
so far shown consistency with 2D models.20,23 Thus, we have

good reason to believe that our conclusions are not limited to
idealized 2D systems.

We note that the exponents we observe are robust to changes
or errors in the value of the discontinuity Kc in the critical
regime (ii) (see Fig. S11 in ESI†). By performing the same
analysis in Fig. 9a, for instance, but using the modulus dis-
continuity in the thermodynamic limit KN

c instead of sample-
dependent Kc, we obtain the same scaling exponent f, provided
that |Dg| � W1/n

\ 1 (see Fig. S12 in ESI†). Thus, we limit
our analysis of the critical exponents to the regime (ii) with
|Dg|�W1/n

\ 1, where we find consistent values of f C 0.79–0.85,
as also reported for Mikado networks previously in ref. 25. These
results are, however, inconsistent with ref. 26, where it was argued
that f = 1 should be generic for fiber networks. We note that it is
possible to observe an apparent f = 1 regime due to finite size
effects, as we clearly observe in Fig. 9b when the system size is
smaller than of order |Dg|�n. The apparent exponent f in this case,
however, would then not be a critical exponent.63,67 A natural
explanation for an apparent exponent of 1.0 here can simply be

Fig. 8 (a) The distributions of the stiffness exponents f for different
system sizes for a triangular network with z = 3.3. The exponents are
obtained in the critical regime in which |Dg| � W1/n 4 1.0 for all sizes.
(b) The ensemble average of f, which is obtained from the distributions
in (a), versus inverse system size 1/W. The error bars are showing the
standard deviations of samples.

Fig. 9 (a) Finite-size scaling of K � Kc for a triangular network with
z = 3.3. The inset shows the collapse of data in the critical regime with
f = 0.79 � 0.07. (b) A similar finite-size scaling as in (a) for a 2D jammed-
packing-derived model with z = 3.3. A distinct analytic regime, i.e., a slope
of 1.0 can be observed in this model as g � gc - 0. The inset, however,
shows the non-mean-field exponent f = 0.85 � 0.05 in the critical regime.
The finite-size dominated regime is shaded in both plots.
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the first term in a scaling function that becomes analytic (and
not critical) for a finite system, as has been argued for packings
of soft, frictionless particles.65 We note that the finite-size
scaling analysis studied here is a rather general technique for
understanding critical phenomena in finite-size computer
simulations. Hence, we expect that a similar approach in
thermal gel models with intermolecular interactions68–70 will
provide insights about their critical phase transition.

As mentioned before, the sub-isostatic central-force net-
works can be stabilized by adding bending resistance to fibers.
Fig. S13a in ESI† shows the shear modulus versus strain for
diluted triangular networks with different bending rigidity k.
For such bend-stabilized networks, the shear modulus is
captured by the scaling form of eqn (7). To find the exponent
f in eqn (7), we fit a power-law to the stiffness data in the regime
where g o gc, in which we have K E k|g � gc|f�f. For individual
samples, we find f using the corresponding f exponents that are
already collected for central-force networks. For a triangular
network with z = 3.3, we find f = 2.64 � 0.12 that is obtained
by using system size W = 100 and k = 10�5. The inset of Fig. S13b
in ESI† shows the distribution of f. Using these values of f and
f, a Widom-like scaling collapse corresponding to eqn (7) is
shown in Fig. S13b and c in ESI,† for individual samples and the
ensemble average of data respectively.

4 Summary and discussion

In this work, we focus on the critical signatures of mechanical
phase transitions in central-force fiber networks as a function
of shear strain. As the applied strain approaches a critical value
gc from above, the stress is borne by a sparse, branch-like
structure that is responsible for network stability. By analyzing
various moments of the force distributions, we identify scaling
exponents for these moments near the transition, similar to
prior work on rigidity percolation.13,50–52 We also find that
the fractal dimension of the load-bearing structure at the
critical strain appears to be 2.0 in 2D. This is consistent with
a finite value of the participation ratio c, as well as a finite
discontinuity in the network stiffness K in the thermodynamic
limit W - N.

Further, we study the self-averaging properties of this
athermal critical phase transition. We observe a strong self-
averaging off criticality, i.e., with relative variance RV(X) B W�d

for X = E, s and K. This is consistent with what is expected for
thermal systems, based on the Brout argument.59 At criticality,
however, as the correlation length x reaches or becomes larger
than the system size W, we find a weak self-averaging of all
macroscopic properties E, s, and K at the critical strain.
Specifically, RV(X) B W�a with 0 o a o d. This weak self-
averaging at the critical point is in agreement with thermal
systems that satisfy the Harris criterion,58 i.e., for which the
heat capacity exponent a o 0. As argued in ref. 27, the network
stiffness is analogous to heat capacity but with the stiffness
exponent f = �a. Thus, our observations of weak self-averaging
provide further evidence for this analogy and suggest that the

mechanical critical behavior along the line of transitions in
Fig. 1 should be insensitive to weak disorder.

By simulating various network models, we confirm that fiber
networks exhibit a finite shear modulus discontinuity Kc, in
agreement with ref. 25 and 26. We observe a weakly decreasing
trend in Kc as a function of system size, but with a non-zero value
in the thermodynamic limit. This discontinuity does, however,
vanish as the network connectivity z approaches the isostatic
point zc, consistent with ref. 14 and 26. We also find that
this discontinuity decreases as one approaches connectivity
percolation. We show that allowing for this discontinuity slightly
modifies the scaling exponents obtained previously for fiber
networks using other methods. The discrepancies between these
methods, however, are within the estimated error bars.

Moreover, by repeating the finite-size scaling analysis of the
nonaffine fluctuations from ref. 27 we again find evidence for
the hyperscaling relation f = dn � 227 and non-mean-field
nature of the transition. In estimating the stiffness exponent
f, we perform an extensive finite-size scaling analysis that
reveals three distinct regimes; besides a critical region with
non-mean-field exponents, we find a finite-size dominated
region for |Dg| � W1/n o 1.0, as well as an off critical regime
for large strains. In the finite-size dominated regime, we show
that the stiffness exponent may appear to be consistent with the
mean-field value f = 1 (Fig. 9). As noted above, however, this
may simply be due to analyticity for finite systems and may
have no bearing on possible mean-field behavior. This may
explain some reports of mean-field behavior, such as in ref. 26.
It is important to emphasize that the scaling exponents cannot
be reliably extracted from simulations close to the transition,
i.e., for small |Dg| - 0, where |Dg| � W1/n t 1.
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