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Under extensional strain, fiber networks can exhibit an anomalously large and nonlinear Poisson effect
accompanied by a dramatic transverse contraction and volume reduction for applied strains as small as a
few percent. We demonstrate that this phenomenon is controlled by a collective mechanical phase transition
that occurs at a critical uniaxial strain that depends on network connectivity. This transition is punctuated
by an anomalous peak in the apparent Poisson’s ratio and other critical signatures such as diverging
nonaffine strain fluctuations.
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When an elastic body is subjected to an infinitesimal
strain εk along one axis, the corresponding strain ε⊥ in the
transverse direction(s) defines Poisson’s ratio ν ¼ −ε⊥=εk
[1,2]. Although this ratio is constrained to the range ν ∈
½−1; 1=2� for isotropic materials in three dimensions (3D),
there have been numerous recent reports of anomalously
large apparent Poisson’s ratios exceeding 1=2 in a variety of
fibrous materials at small strain, including felt [3] and
networks of collagen [4–8] and fibrin [7,9]. This corre-
sponds to an anomalous reduction in volume under
extension, in apparent stark contrast to the linear behavior
of all isotropic materials, which strictly maintain or
increase their volume under infinitesimal extension. This
is even true of auxetic materials with ν < 0 [10–13]. A
volume reduction under uniaxial extension can have
dramatic effects in living tissue, such as the development
of highly aligned, stiffened network regions with reduced
porosity between contractile cells in the extracellular matrix
[4,8,14,15]. Although it has been argued that this effect is
related to stiffening and other nonlinear phenomena in such
networks [3,8,16], it remains unclear to what extent this
anomaly is controlled by network architecture and filament
properties.
Here, we show that the anomalous Poisson’s ratio of

fiber networks is governed by a mechanical phase transition
induced by applied axial strain. Using simulations of
disordered networks in two dimensions (2D) and 3D, we
show that this phenomenon is critical in nature, with
diverging strain fluctuations in the vicinity of the transition
and a corresponding maximum of the apparent Poisson’s
ratio. Connecting with recent studies of mechanical criti-
cality in athermal networks [17–22], we demonstrate that
this maximum occurs at a connectivity-controlled strain
corresponding to a macroscopic crossover between distinct
mechanical regimes, with large-scale, collective network
rearrangements as a branched, system-spanning network of

tensile force chains develops. Our results highlight the
influence of collective properties on the nonlinear mechan-
ics of athermal networks and suggest that controlling
connectivity could enable the design of tailored elastic
anomalies in engineered fiber networks.
Recent work has demonstrated that the strain-stiffening

effect in cross-linked networks of stiff athermal semiflexible
biopolymers, such as collagen, which can be modeled as
elastic rods with bending modulus κ and stretching modulus
μ, can be understood as a mechanical phase transition
between a bending-dominated regime and a stretching-
dominated regime at an applied shear or extensional strain
governed by the average network connectivity z [18–20,23].
Despite being athermal, such networks exhibit classic
signatures of criticality near this transition, including
power-law scaling of the elastic moduli with strain and
system-size-dependent nonaffine strain fluctuations indica-
tive of a diverging correlation length [18,20]. In the limit of
κ → 0, stiffening corresponds to the rearrangement of the
network to form a marginally stable, highly heterogenous
network of branched force chains [24,25] similar to the force
networks observed in marginal jammed packings under
compressive or shear strain [26–28]. Prior work has con-
sidered this rigidity transition in networks under applied
simple shear [18,20–22] or bulk strain [21–23], with
quantitative agreement between shear experiments on col-
lagen and simulations [29].
We find that an analogous collective mechanical phase

transition controls the mechanics of networks under uniaxial
strain with free orthogonal strains. In athermal semiflexible
polymer networks, strain stiffening and the nonlinear
Poisson effect occur at a critical extensional strain controlled
by network connectivity, corresponding to a transition from
a bending-dominated regime to one dominated by stretching.
The expected phase diagram in connectivity-strain space is
sketched in Fig. 1(a). As applied strain drives a network to
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approach and cross the critical strain boundary, the network’s
mechanics become stretching dominated and the resultant
nonlinear strain stiffening induces dramatic transverse con-
traction coinciding with a peak in the incremental Poisson’s
ratio ν̃ [see Fig. 1(b)]. Concurrent with this transition, the
system exhibits nonaffine strain fluctuations that grow by
orders of magnitude as criticality is approached (either by
decreasing κ or approaching the critical strain). We dem-
onstrate that this phenomenon occurs irrespective of the
details of the underlying network structure, consistent with
past observations of networks under simple shear [18,25].
Our results suggest that the dramatic nonlinear Poisson effect
observed in collagen and fibrin gels is macroscopic evidence
of this critical rigidity transition.
Models.—We consider 2D and 3D disordered networks

comprising interconnected one-dimensional Hookean
springs with stretching modulus μ, with additional bending
interactions with modulus κ between adjacent bonds. To
explore the influence of network structure on the transition,
we test a variety of network geometries, including Mikado
networks [30], 2D and 3D jammed PD networks [25], 3D
Voronoi networks [16], and 3D random geometric graph
networks [31,32]. The network HamiltonianH ¼ Hs þHb
consists of a stretching contribution,

Hs ¼
μ

2

X

ij

ðlij − lij;0Þ2
lij;0

; ð1Þ

in which the sum is taken over connected node pairs ij, lij

is the length of the bond connecting nodes i and j, and lij;0

is the corresponding rest length, as well as a bending
contribution,

Hb ¼
κ

2

X

ijk

ðθijk − θijk;0Þ2
lijk;0

; ð2Þ

in which the sum is taken over connected node triplets ijk,
θijk is the angle between bonds ij and jk, θijk;0 is the
corresponding rest angle, and lijk;0 ¼ ðlij;0 þ ljk;0Þ=2. For
Mikado networks,whichwe designate to have freely hinging
cross links, the sum in Eq. (2) is taken only over consecutive
node triplets along initially collinear bonds. Following prior
work, we set μ ¼ 1 and vary the dimensionless bending
rigidity κ̃ ¼ κ=ðμl2

cÞ [25,39], where lc is the average bond
length. Since the volume fractions of biopolymer gels are
typically 1% or less [29,40], we do not include excluded
volume effects in the results presented below, although we
examine their effects in Supplemental Material [32]. All
network models utilize generalized Lees-Edwards periodic
boundary conditions [25,41], which specify that the dis-
placement vectors between each network node and its
periodic images transform according to the deformation
gradient tensor Λ. We consider purely extensional strain,
with Λii ¼ 1þ εi, where εi is the strain along the i axis
relative to the initial configuration. Whereas the primary
results of this Letter utilize periodic boundaries, we have also
performed simulations of nonperiodic networks with fixed
upper and lower boundaries.We find that fixed boundaries of
width equal to or greater than the sample length can suppress
the apparent Poisson’s ratio [32]. The normal stress compo-
nents σii are computed as σii ¼ ð∂H=∂εiÞ=V, in which V is
the system’s volume. Unless otherwise stated, all curves
correspond to an average over 15 samples.
To measure the nonlinear Poisson effect, we apply

quasistatic longitudinal extensional strain εk ≡ ε1 in small
increments δεk ¼ εk;n − εk;n−1 and, at a given strain, first
allow the system to reach mechanical equilibrium by mini-
mizing the network’s Hamiltonian using the L-BFGS
algorithm [42]. After each extensional strain step, we
simulate free transverse boundaries by incrementally vary-
ing the transverse strain(s) ε2 (and ε3 in 3D) in order to
reduce the corresponding transverse normal stress compo-
nent(s) to 0, i.e., j∂H=∂εij ≈ 0. In 2D the single transverse
strain is ε⊥ ≡ ε2, whereas in 3D the stresses along the two
transverse axes are relaxed independently and we define the
transverse strain, for the purposes of computing the
incremental Poisson’s ratio, as ε⊥ ≡ ðε2 þ ε3Þ=2. For
orientationally isotropic network models, ε2 and ε3 are

0 0.1 0.2 0.3
0

2

4

6

1

2

3

1 2 3

In
cr

ea
si

ng

(a)

(c)

(b)

FIG. 1. (a) Under applied extensional strain εk (red arrow) with
free transverse strains, subisostatic (z < zc) athermal fiber net-
works transition from a soft, bending-dominated regime (H ∝ κ,
floppy in the limit of κ → 0) to a stiff, stretching-dominated
regime (H ∝ μ) at a critical applied strain εk;c (dotted line) that
increases with decreasing z. As z → zc, εk;c → 0. (b) The
incremental Poisson’s ratio ν̃ ¼ −∂ε⊥=∂εk exhibits a peak at
the critical strain, indicated by the dotted line. The black curve
corresponds to a 2D packing-derived (PD) network with κ̃ ¼
10−5 and z ¼ 3.2. Network configurations corresponding to the
numbered circles are shown in (c). Here, the black box represents
the deformation of the initially square periodic boundaries. Bonds
under greater tension f than the average, hfi, are colored blue
with thickness proportional to f=hfi.
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equivalent in the limit of large system size. The differential
Young’s modulus Ẽ is computed as Ẽ ¼ ∂σk=∂εk.
Results.—Subisostatic athermal networks undergo a

transition from a bending-dominated regime to a stiff
stretching-dominated regime at a critical applied shear or
extensional strain [43,44]. Recent work showed that athe-
rmal networks under extensional strain with free trans-
verse strains, which we consider in this work, undergo a
similar transition from a bending-dominated to stretching-
dominated regime corresponding with strain stiffening
[16]. To examine the influence of bending rigidity on this
transition, we first consider 2D packing-derived networks
with fixed connectivity z ¼ 3.2 < zc and varying reduced
bending rigidity κ̃. In Fig. 2(a), we plot the relaxed
transverse strain ε⊥ as a function of applied longitudinal
extensional strain εk, with the corresponding incremental
Poisson’s ratio ν̃ ¼ −∂ε⊥=∂εk shown in Fig. 2(b). The

fraction of the total network energy due to bending
interactions Hb=H as a function of strain is shown in
Supplemental Material [32]. Networks with high κ̃ deform
approximately linearly up to relatively large applied strains,
with minimal strain dependence of ν̃. In contrast, networks
with low κ̃ exhibit similar linear deformation (with ν̃ < 1)
in the limit of small applied strain, but under increasing
applied strain these undergo a transition to a much stiffer
stretching-dominated regime, resulting in significant trans-
verse contraction and thus a very large apparent Poisson’s
ratio. At larger strains, within the stretching-dominated
regime, the networks again deform approximately linearly
with an incremental Poisson’s ratio ν̃ < 1. The transition
occurs at a critical applied extension εc, which we define as
the strain corresponding to the inflection point in the ε⊥ vs
εk curve as κ → 0. By definition, this corresponds to a peak
in ν̃, which grows with decreasing κ̃.
This unusual nonlinear Poisson effect results from the

asymmetric nonlinear mechanics of these networks, which
stiffen dramatically under extensional strain but remain soft
under compression [3,4]. Compressing a semiflexible
polymer network induces normal stresses proportional to
the bending rigidity κ of the constituent polymers, whereas
sufficient extension induces normal stresses proportional to
the polymer stretching modulus μ [43]. An athermal
network under uniaxial extension with fixed transverse
strains exhibits an increase in the magnitude of its normal
stresses from σii ∝ κ to σii ∝ μ at the critical strain, both
along the strain axis (σk) and the transverse axes (σ⊥).
Relaxing the transverse boundaries to satisfy σ⊥ ¼ 0
requires contraction along the transverse axes, which
necessarily reduces the stiff stretching-induced contribu-
tions (∝ μ) until these are balanced by softer, compression-
induced contributions (∝ κ). The amount of transverse
contraction in the vicinity of the critical strain thus
increases with μ=κ.
Past work showed that athermal networks under applied

shear strain exhibit diverging nonaffine strain fluctuations
at the critical strain, in the limit of κ̃ → 0, indicative of a
diverging correlation length [18,20,45]. Concurrent with
the strain-driven transition in this work, we observe
similarly large internal strain fluctuations. We use an
analogous measure of the strain fluctuations for the
deformation gradient tensor Λ defined above. For the
nth strain step, the incremental applied extensional strain
δεk ¼ εk;n − εk;n−1 and relaxation of the transverse strain(s)
transforms the deformation gradient tensor from Λn−1 to
Λn. We compute the resulting differential nonaffinity δΓ as

δΓ ¼ 1

l2
cðδεkÞ2

hkδui − δuaff
i k2i ð3Þ

in which the average is taken over all nodes i, lc is the
initial average bond length, δui ¼ ui;n − ui;n−1 is the actual
displacement of node i after the extensional strain step and

FIG. 2. (a) Relaxed transverse strain ε⊥ as a function of applied
extensional strain εk for 2D packing-derived networks with
z ¼ 3.2 and varying κ̃. For large κ̃, networks deform linearly
up to relatively large strains. The gray dashed line corresponds to
constant volume, ΔV ≡ V − V0 ¼ 0. In the limit of low κ̃,
networks deform linearly at low strains, with a linear Poisson’s
ratio less than 1, but exhibit a significant increase in transverse
contraction at a critical strain εk;c, indicated by the dotted black
line. (b) The magnitude of the incremental Poisson’s ratio ν̃ ¼
−∂ε⊥=∂εk peaks at the critical strain and increases with decreas-
ing κ̃. (c) At the critical strain, we observe a corresponding peak
in the nonaffine strain fluctuations δΓ that increases in magnitude
as κ̃ is decreased.
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transverse strain relaxation, and δuaff
i is the displacement of

node i corresponding to an affine transformation from the
previous configuration at strain state Λn−1 to the new strain
state Λn. Consistent with prior work examining networks
under shear strain [20], we find that increasing κ̃ results in
increasingly affine deformation (decreasing δΓ), whereas in
the low-κ̃ limit we observe a peak in δΓ at the critical strain
that grows with decreasing κ̃ [see Fig. 2(c)].
For athermal subisostatic networks under applied simple

shear strain, the critical strain is governed by the average
network connectivity z [18,45,46], with the critical strain
decreasing to 0 as z approaches the Maxwell isostatic value
zc ¼ 2d, where d is the dimensionality [47]. As sketched in
our hypothesized phase diagram [see Fig. 1(a)], we expect z
to similarly control the critical strain for networks under
extensional strain with free orthogonal strains. In Fig. 3, we
plot the incremental Poisson ratio ν̃ as a function of εk for
several network geometries in 2D and 3D with varying z.
While the precise location of the critical strain for a given
connectivity is sensitive to the choice of network structure,
we find that all networks tested exhibit behavior that is
qualitatively consistent with the proposed phase diagram,
with a critical strain εk;c that decreases as z → zc.
We also explicitly map out a phase diagram for packing-

derived networks in 2D. In Fig. 4(a), we plot both the
incremental Poisson’s ratio ν̃ and differential nonaffinity δΓ
for 2D PD networks as a function of applied strain over a
range of z values up to the 2D isostatic point, zc ¼ 4. Both
quantities become maximal at a critical strain that
approaches 0 as z → zc. Near zc, the critical strain grows
as εk;c ∝ zc − z, consistent with prior results [23,32,46].
We plot the corresponding differential Young’s modulus
Ẽ ¼ ∂σk=∂εk as a function of z and εk in Fig. 4(b),

demonstrating that the transition of the network from the
soft, bending-dominated regime (Ẽ ∝ κ) to the stiffer,
stretching-dominated regime (Ẽ ∝ μ) coincides with peaks
in both the incremental Poisson’s ratio and the differential
nonaffinity [Fig. 4(a)]. Further, we find that the differential
Young’s modulus scales as a power law Ẽ ∝ jεk − εk;cjf
above the critical strain [32].
Discussion.—We have demonstrated that the nonlinear

Poisson effect observed in subisostatic networks is a direct
consequence of a strain-driven collective mechanical phase
transition. Whereas the large apparent Poisson’s ratios
observed in such networks at finite strains can be quali-
tatively understood as resulting from their highly asym-
metric mechanical properties, i.e., that they stiffen
dramatically under finite extension but remain compara-
tively soft under compression, as discussed conceptually in
Refs. [3,4], we have demonstrated that this asymmetry
becomes maximized at a critical phase boundary controlled
by strain and connectivity. At this boundary, a network
exhibits diverging strain fluctuations as it collectively
rearranges to transition from a soft, bending-dominated
regime to a stiff, stretching-dominated regime. In the latter,
marginally stable state, the mechanics become dominated
by an underlying branched network of bonds under tension,
which generates tensile transverse normal stresses that
drive the lateral contraction of the network against the
weaker compression-induced stresses. This results in an
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FIG. 4. (a) Incremental Poisson’s ratio ν̃ ¼ −∂ε⊥=∂εk as a
function of applied extensional strain εk and average connectivity
z for 2D packing-derived networks with W ¼ 100 and κ̃ ¼ 10−5.
Inset: For a given connectivity z, the differential nonaffinity δΓ
exhibits a peak coinciding with the peak in the incremental
Poisson ratio ν̃. (b) Differential Young’s modulus Ẽ ¼ ∂σk=∂εk
for the same networks as in (a). Inset: Corresponding stretching
energy fraction Hs=H.
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apparent Poisson’s ratio that exceeds 1=2 at the phase
transition and grows as a function of the relative magnitude
the stiff and soft contributions, μ=κ. Whereas we have
focused on the T ¼ 0 limit with an eye towards networks
such as collagen, we note that finite temperature can
stabilize otherwise floppy networks [48,49] and would
be expected to reduce the peak in the differential Poisson’s
ratio in a manner similar to finite κ.
Using simulations of a variety of network architectures

in 2D and 3D, we have shown that this effect is robustly
controlled by connectivity and occurs independently of the
precise underlying network structure. Further, we have
demonstrated critical scaling of the differential Young’s
modulus [32] similar to what has been shown for the shear
modulus of collagen networks [18]. This suggests that
experimental measurements of the differential Young’s
modulus of collagen gels under uniaxial strain should
quantitatively fit the predicted scaling form, with a given
sample exhibiting a peak in the incremental Poisson’s ratio
at the transition point. Further work could enable prediction
of the local stiffness in the extracellular matrix based on the
observed local strain asymmetry.
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